

SIGNIFICANT COBALT POTENTIAL IDENTIFIED AT ROE HILLS GOLD-NICKEL PROJECT, WA

Extensive zone of near surface Cobalt mineralisation identified from historical drill data, with high-grade results of up to 1.16% Cobalt

<u>Highlights:</u>

- Strike extensive, near surface cobalt mineralisation identified at the ROE 1 prospect.
- High-grade cobalt intercepts include:
 - ROE172: 14m @ 0.39% Co (including 2m @ 1.16% Co from 20m)
- Cobalt mineralisation (>0.05% Co) extends over a strike length of at least 330m (open), 150m width (open) and >8m thickness, with the mineralised zone remaining open to the north, east and south.
- Anomalous cobalt results identified over a total strike distance of ~7.5 km at ROE 1.
- Significant cobalt mineralisation identified at numerous prospects throughout the Project tenure.
- Additional fieldwork planned as an immediate priority to further assess the cobalt potential at Roe Hills ahead of the next planned drilling program commencing in April 2017.
- Cobalt is a vital component for the manufacture of many types of batteries, including lithium-ion batteries.
- Assays still pending from the recent maiden gold drilling program, following the significant results reported to date from the Terra Trend and Lady of the Lake prospects.

Kairos Minerals Ltd (ASX: KAI; "Kairos" or "the Company") is pleased to advise that a recent review of historical drill data from the Company's 100%-owned **Roe Hills Project**, located 120km east-south-east of Kalgoorlie in Western Australia (see Figure 1), has highlighted the potential for significant cobalt mineralisation at the Roe 1 prospect as well as identifying significant cobalt intercepts from numerous prospects throughout the broader project area.

The review was conducted in preparation for the Company's upcoming drilling program at Roe Hills targeting nickel-copper mineralisation, which is to be underpinned by a co-funding grant of \$150,000 under the Western Australian Government's Exploration Incentive Scheme (EIS).

The identification of potentially significant cobalt mineralisation at Roe Hills adds a further dimension to the ongoing exploration of this emerging project area, which is also highly prospective for nickel - copper sulphide mineralisation.

As previously announced, Kairos has recently completed its maiden \sim 4,000m RC and diamond drilling program at Roe Hills evaluating the gold potential of the project. Significant gold results have already been reported from the 'Terra Trend' and 'Lady of the Lake' prospects, with a large number of assays still outstanding and expected over the coming weeks.

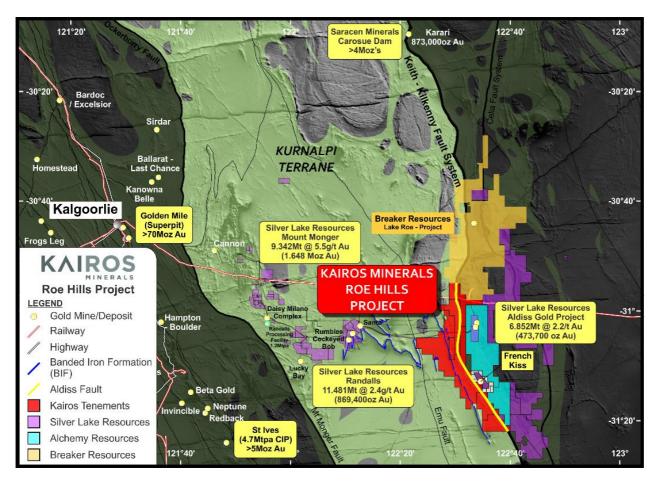
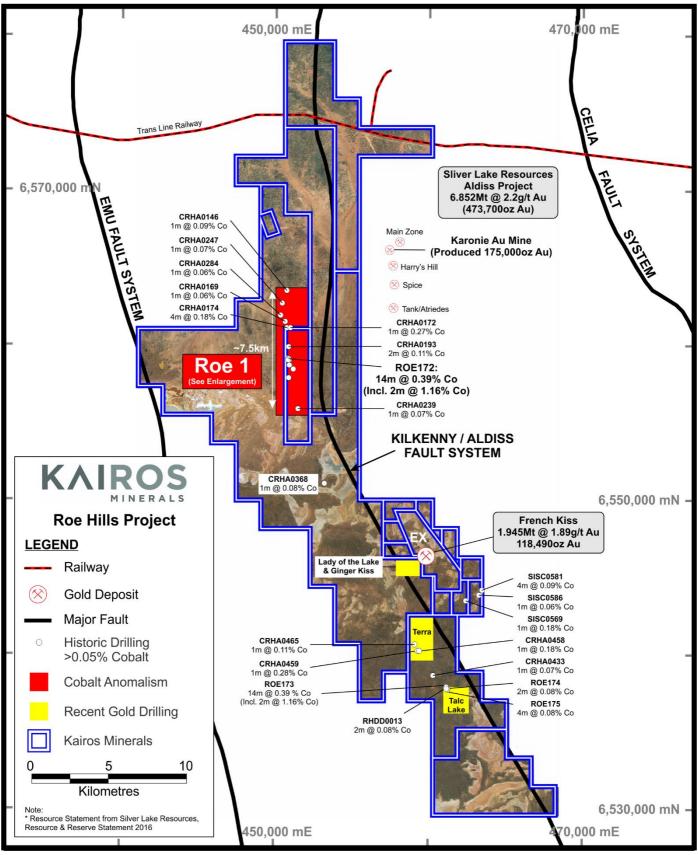
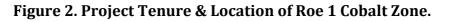


Figure 1. Roe Hills Project Location.

First-Pass Review - Cobalt Potential

A preliminary evaluation of the cobalt potential at Roe Hills was undertaken by Kairos' technical team based on a review of historical drilling and geochemical data from the Roe Hills Project.


The review has identified potentially significant cobalt mineralisation within an extended geochemically anomalous footprint at the ROE 1 prospect (see Figures 2-5).


A number of historical high-grade cobalt intercepts have been identified at ROE 1, including:

ROE172: 14m @ 0.39% Co from 20m.
 Including 2m @ 1.16% Co from 20m

Cobalt mineralisation at ROE 1 (>0.05% Co) extends over a strike length of at least 330m, a width of at least 150m and a thickness in excess of 8m (see Figures 4 and 5). Importantly, this zone occurs within a broader area of cobalt anomalism which can be traced over a strike length of at least 7.5km's and which remains open in all directions.

The Roe Hills Project has not previously been evaluated as a potential host for cobalt mineralisation and as a consequence historical cobalt data is limited or incomplete. However, the available data indicates that significant cobalt enrichment is present throughout the Project tenure, and is not restricted only to the ROE 1 Prospect (see Figure 2).

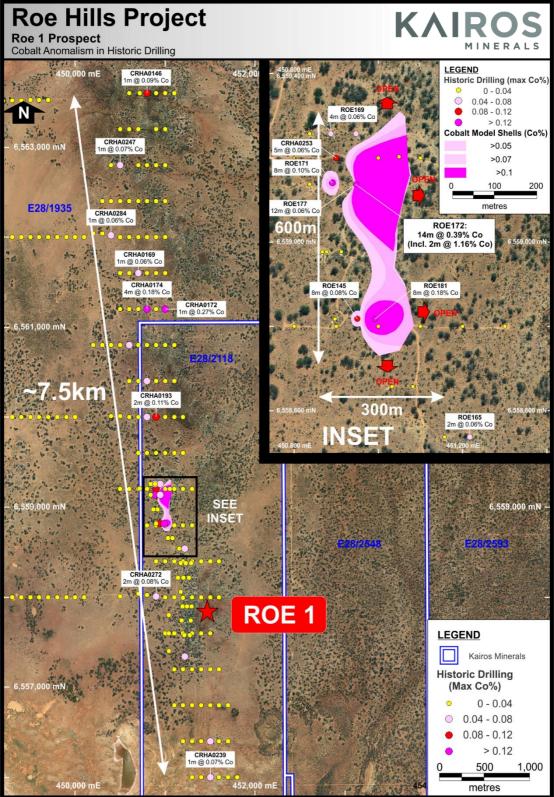


Figure 3. Opportunities for the identification of additional cobalt mineralisation within the ROE 1 prospect.

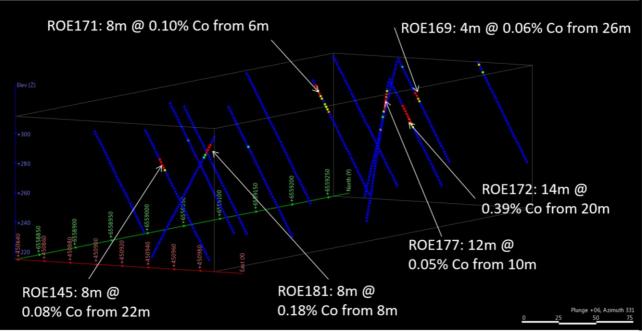
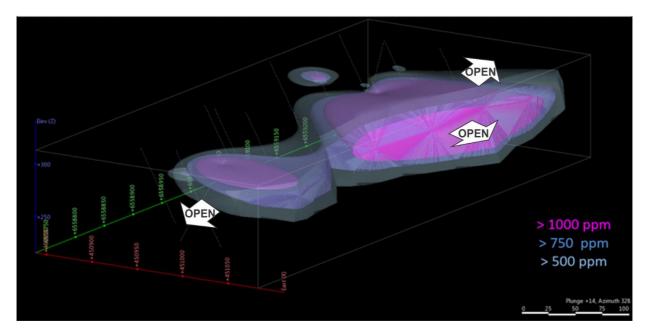



Figure 4. Roe 1 historical cobalt intercepts.

Figure 5. Roe 1 cobalt mineralisation (>0.05% Co) interpreted to extend over a 330m strike length, 150m width and >8m thickness (open to the north, south and east).

Significant indications of cobalt mineralisation were also identified within the broader Roe Hills region, however drill holes appear to have only been partially sampled and the opportunity remains for the widths of the mineralised intercepts to be extended with additional sampling and/or drilling. For example:

• Hole CRHA0172: Only the last two metres were sampled, however an intercept grading 0.27% Co was returned from 19-20m; and

• Hole CRH0174: Incomplete samples assayed, with results including 4m @ 0.18% Co from 34m.

<u>Next Steps</u>

Based on the positive results delivered by the data review, Kairos now intends to re-log historical drill holes and undertake additional sampling for cobalt mineralisation across the Roe Hills Project area, as well as conducting further test work at the ROE 1 prospect area with the aim of better defining and understanding the identified zone of cobalt mineralisation.

				Roe Hill	s Histo	orical (Drilling	Results						
	Col	lar Location	& Orientatio	n							Intersectio	on Summar	y	
Prospect	Hole	Туре	MGA mE	MGA mN	RL	Dip	Az	Total Depth (m)		From (m)	To (m)	Length (m)	Grade Co %	Comment
	CRHA0146	Aircore	450,800	6,563,600	352	-60	90	14		12	13	1	0.09	
	CRHA0247	Aircore	450,500	6,562,800	336	-60	90	44		37	38	1	0.07	
	CRHA0169	Aircore	450,700	6,561,600	325	-60	90	36		34	35	1	0.06	
	CRHA0172	Aircore	451,000	6,561,200	325	-60	90	20		19	20	1	0.27	
	CRHA0174	Aircore	450,800	6,561,200	325	-60	90	41		34	38	4	0.18	
	CRHA0193	Aircore	450,900	6,560,000	319	-60	90	33		29	31	2	0.11	
	ROE169	RC	450,887	6,559,257	311	-60	90	80		26	30	4	0.06	
	CRHA0253	Aircore	450,900	6,559,200	311	-60	90	48		30	35	5	0.06	
ROE1	ROE171	RC	450,887	6,559,137	310	-60	90	90		6	14	8	0.1	
	ROE172	RC	450,947	6,559,137	312	-60	90	83		20	34	14	0.39	
									including	20	22	2	1.16	
	ROE177	RC	450,947	6,559,137	312	-80	270	222		10	22	12	0.06	
	ROE145	RC	450,937	6,558,817	308	-60	90	174		22	30	8	0.08	
	ROE181	RC	450,992	6,558,817	308	-60	270	220		8	16	8	0.18	
	ROE165	RC	451,217	6,558,537	303	-60	90	84		16	18	2	0.06	
	CRHA0272	Aircore	450,900	6,558,010	308	-60	90	28		24	26	2	0.08	
	CRHA0239	Aircore	451,500	6,556,000	294	-60	90	20		19	20	1	0.07	
ROE2	CRHA0368	Aircore	453,200	6,551,200	296	-60	90	24		23	24	1	0.08	
	SISC0581	Aircore	463,437	6,544,262	286	-60	44.8	39		32	36	4	0.09	
FRENCH KISS	SISC0586	Aircore	463,147	6,543,970	285	-60	44.8	33		32	33	1	0.06	EOH
	SISC0569	Aircore	462,313	6,543,592	286	-60	44.8	44		43	44	1	0.18	EOH
	CRHA0465	Aircore	459,000	6,540,800	296	-60	90	69		67	68	1	0.11	
	CRHA0458	Aircore	459,300	6,540,400	301	-60	90	55		30	31	1	0.18	
HOOTON	CRHA0459	Aircore	459,200	6,540,400	299	-60	90	45		44	45	1	0.28	1
	CRHA0433	Aircore	460,200	6,538,800	310	-60	90	43		44	43	1	0.23	EOH
		•	.,	, .,						-				
	ROE173	RC	461,042	6,538,037	317	-60	90	180		32	34	2	0.07	
	ROE174	RC	461,112	6,537,957	317	-60	90	200		40	42	2	0.08	
TALC LAKE	RHDD0013	Diamond	461,040	6,537,960	315	-60	90	421.1		12	44	32	0.03	
									including	24	28	4	0.06	
	ROE175	RC	461,112	6,537,877	316	-60	90	190		30	34	4	0.08	

Table 1. Significant Intercepts Table

Management Comment

Kairos' Managing Director, Mr Joshua Wellisch, said the Company's first-pass evaluation of the cobalt potential at Roe Hills had delivered very positive results that would now be followed up as an immediate priority.

"While still at a very early stage, our preliminary data review has identified a substantial near term opportunity for delineating significant cobalt mineralisation within the Roe Hills region, which we will continue to assess over the coming months," he said.

"Cobalt is a vital component for the manufacture of many types of batteries, including lithium-ion batteries, and has been one of the strongest performing commodities of the year on the back of surging demand and a significant and growing supply shortfall.

"The potential to advance a high quality cobalt discovery at Roe Hills would therefore represent a very exciting opportunity for Kairos in the current market environment, and we intend to undertake additional fieldwork on this project as a priority. This will be undertaken in parallel with ongoing gold exploration, which remains our main focus at this project as outlined in our recent announcements."

ENDS

For further information, please contact:

Investors: Mr Joshua Wellisch Managing Director Kairos Minerals Limited **Media:** Nicholas Read/Paul Armstrong Read Corporate Ph: 08 9388 1474

COMPETENT PERSON STATEMENT:

Competent Person: The information in this report that relates to Exploration Results or Mineral Resources is based on information compiled and reviewed by Mr Steve Vallance, who is the Technical Manager for Kairos Minerals Ltd and who is a Member of The Australian Institute of Geoscientists. The information was also reviewed by Mr Neil Hutchison, who is a Non Exec Director of Kairos Minerals Ltd and who is also a Member of The Australian Institute of Geoscientists. Both Mr Vallance and Mr Hutchison have sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity which they are undertaking to qualify as Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.' (the JORC Code 2012). Mr Vallance and Mr Hutchison have consented to the inclusion in the report of the matters based on their information in the form and context in which it appears.

The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

			Sample				
Hole	Prospect	Tenement	Description	From	То	Co ppm	Co %
CRHA0146	Roe 1	E 2801935	unknown	10	12	45	0.00
CRHA0146	Roe 2	E 2801935	unknown	12	13	855	0.09
CRHA0146	Roe 3	E 2801935	unknown	13	14	20	0.00
CRHA0247	Roe 4	E 2801935	unknown	34	37	144	0.01
CRHA0247	Roe 5	E 2801935	unknown	37	38	677	0.07
CRHA0247	Roe 6	E 2801935	unknown	38	40	157	0.02
CRHA0248	Roe 7	E 2801935	unknown	36	38	185	0.02
CRHA0248	Roe 8	E 2801935	unknown	38	40	351	0.04
CRHA0248	Roe 9	E 2801935	unknown	40	41	174	0.02
CRHA0169	Roe 10	E 2801935	unknown	32	34	229	0.02
CRHA0169	Roe 11	E 2801935	unknown	34	35	579	0.06
CRHA0169	Roe 12	E 2801935	unknown	35	36	312	0.03
CRHA0172	Roe 13	E 2801935	unknown	18	19	153	0.02
CRHA0172	Roe 14	E 2801935	unknown	19	20	2730	0.27
CRHA0174	Roe 15	E 2801935	unknown	34	38	1840	0.18
CRHA0193	Roe 16	E 2802118	unknown	29	31	1045	0.10
CRHA0193	Roe 17	E 2802118	unknown	31	32	131	0.01
ROE169	Roe 18	E 2802118	unknown	24	26	180	0.02
ROE169	Roe 19	E 2802118	unknown	26	28	590	0.06
ROE169	Roe 20	E 2802118	unknown	28	30	550	0.06
ROE169	Roe 21	E 2802118	unknown	30	32	420	0.04
ROE169	Roe 22	E 2802118	unknown	32	34	330	0.03
CRHA0253	Roe 23	E 2802118	unknown	30	32	539	0.05
CRHA0253	Roe 24	E 2802118	unknown	32	34	601	0.06
CRHA0253	Roe 25	E 2802118	unknown	34	35	941	0.09
CRHA0253	Roe 26	E 2802118	unknown	35	36	168	0.02
ROE171	Roe 27	E 2802118	unknown	0	2	440	0.04
ROE171	Roe 28	E 2802118	unknown	2	4	150	0.02
ROE171	Roe 29	E 2802118	unknown	4	6	140	0.01
ROE171	Roe 30	E 2802118	unknown	6	8	590	0.06
ROE171	Roe 31	E 2802118	unknown	8	10	1740	0.17
ROE171	Roe 32	E 2802118	unknown	10	12	360	0.04
ROE171	Roe 33	E 2802118	unknown	12	14	1200	0.12
ROE171	Roe 34	E 2802118	unknown	14	16	390	0.04
ROE171	Roe 35	E 2802118	unknown	16	18	400	0.04
ROE171	Roe 36	E 2802118	unknown	18	20	140	0.01
ROE171	Roe 37	E 2802118	unknown	20	22	330	0.03
ROE171	Roe 38	E 2802118	unknown	22	24	370	0.04
ROE171	Roe 39	E 2802118	unknown	24	26	340	0.03
ROE171	Roe 40	E 2802118	unknown	26	28	430	0.04

ROE172	Roe 41	E 2802118	unknown	16	18	160	0.02
ROE172	Roe 42	E 2802118	unknown	18	20	200	0.02
ROE172	Roe 42	E 2802118	unknown	20	22	3330	0.33
ROE172	Roe 44	E 2802118	unknown	22	24	11600	1.16
ROE172	Roe 45	E 2802118	unknown	24	26	4540	0.45
ROE172	Roe 46	E 2802118	unknown	26	28	3320	0.33
ROE172	Roe 47	E 2802118	unknown	28	30	2810	0.28
ROE172	Roe 48	E 2802118	unknown	30	32	470	0.05
ROE172	Roe 49	E 2802118	unknown	32	34	1080	0.11
ROE172	Roe 50	E 2802118	unknown	34	36	390	0.04
ROE172	Roe 51	E 2802118	unknown	36	38	330	0.03
ROE177	Roe 52	E 2802118	unknown	0	2	465	0.05
ROE177	Roe 53	E 2802118	unknown	2	4	235	0.02
ROE177	Roe 54	E 2802118	unknown	4	6	185	0.02
ROE177	Roe 55	E 2802118	unknown	6	8	225	0.02
ROE177	Roe 56	E 2802118	unknown	8	10	330	0.03
ROE177	Roe 57	E 2802118	unknown	10	12	650	0.07
ROE177	Roe 58	E 2802118	unknown	12	14	445	0.04
ROE177	Roe 59	E 2802118	unknown	14	16	590	0.06
ROE177	Roe 60	E 2802118	unknown	16	18	495	0.05
ROE177	Roe 61	E 2802118	unknown	18	20	660	0.07
ROE177	Roe 62	E 2802118	unknown	20	22	520	0.05
ROE177	Roe 63	E 2802118	unknown	22	24	330	0.03
ROE145	Roe 64	E 2802118	unknown	20	22	80	0.01
ROE145	Roe 65	E 2802118	unknown	22	24	920	0.09
ROE145	Roe 66	E 2802118	unknown	24	26	850	0.09
ROE145	Roe 67	E 2802118	unknown	26	28	560	0.06
ROE145	Roe 68	E 2802118	unknown	28	30	740	0.07
ROE145	Roe 69	E 2802118	unknown	30	32	360	0.04
ROE181	Roe 70	E 2802118	unknown	6	8	245	0.02
ROE181	Roe 71	E 2802118	unknown	8	10	3800	0.38
ROE181	Roe 72	E 2802118	unknown	10	12	830	0.08
ROE181	Roe 73	E 2802118	unknown	12	14	1990	0.20
ROE181	Roe 74	E 2802118	unknown	14	16	640	0.06
ROE181	Roe 75	E 2802118	unknown	16	18	320	0.03
ROE181	Roe 76	E 2802118	unknown	18	20	290	0.03
ROE165	Roe 77	E 2802118	unknown	14	16	180	0.02
ROE165	Roe 78	E 2802118	unknown	16	18	560	0.06
ROE165	Roe 79	E 2802118	unknown	18	20	360	0.04
ROE165	Roe 80	E 2802118	unknown	20	22	350	0.04
ROE165	Roe 81	E 2802118	unknown	22	24	260	0.03
CRHA0272	Roe 82	E 2802118	unknown	24	26	750	0.08
CRHA0239	Roe 83	E 2802118	unknown	19	20	744	0.07
CRHA0368	Roe 2	E 2801935	unknown	23	24	810	0.08

T +61(0)8 9226 1141 F +61(0)3 9614 0550 Level 1, 14 Outram St West Perth WA 6005 kairosminerals.com.au ABN 84 006 189 331 ASX: KAI

KAIROS

SISC0581	Kissing South	P 2801300	Composite 4m	28	32	78	0.01
SISC0581	Kissing South	P 2801300	Composite 4m	32	36	886	0.09
SISC0581	Kissing South	P 2801300	Composite 2m	36	38	275	0.03
SISC0586	Kissing South	P 2801300	Composite 4m	28	32	30	0.00
SISC0586	Kissing South	P 2801300	1m	32	33	548	0.05
SISC0569	Kissing South	P 2801299	1m	43	44	1835	0.18
CRHA0465	Hooton	E 2802117	unknown	66	68	68	0.01
CRHA0465	Hooton	E 2802117	unknown	68	69	1090	0.11
CRHA0458	Hooton	E 2802117	unknown	28	30	370	0.04
CRHA0458	Hooton	E 2802117	unknown	30	31	1765	0.18
CRHA0458	Hooton	E 2802117	unknown	31	34	48	0.00
CRHA0459	Hooton	E 2802117	unknown	43	44	49	0.00
CRHA0459	Hooton	E 2802117	unknown	44	45	2750	0.28
CRHA0433	Hooton	E 2802117	unknown	36	38	174	0.02
CRHA0433	Hooton	E 2802117	unknown	38	40	309	0.03
CRHA0433	Hooton	E 2802117	unknown	40	41	208	0.02
CRHA0433	Hooton	E 2802117	unknown	41	42	230	0.02
CRHA0433	Hooton	E 2802117	unknown	42	44	255	0.03
CRHA0433	Hooton	E 2802117	unknown	44	46	227	0.02
CRHA0433	Hooton	E 2802117	unknown	46	47	736	0.07
ROE173	Talc Lake	E 2802117	unknown	28	30	50	0.01
ROE173	Talc Lake	E 2802117	unknown	30	32	265	0.03
ROE173	Talc Lake	E 2802117	unknown	32	34	680	0.07
ROE173	Talc Lake	E 2802117	unknown	34	36	375	0.04
ROE174	Talc Lake	E 2802117	unknown	30	32	290	0.03
ROE174	Talc Lake	E 2802117	unknown	32	34	185	0.02
ROE174	Talc Lake	E 2802117	unknown	34	36	250	0.03
ROE174	Talc Lake	E 2802117	unknown	36	38	265	0.03
ROE174	Talc Lake	E 2802117	unknown	38	40	390	0.04
ROE174	Talc Lake	E 2802117	unknown	40	42	790	0.08
ROE174	Talc Lake	E 2802117	unknown	42	44	170	0.02
ROE175	Talc Lake	E 2802117	unknown	26	28	65	0.01
ROE175	Talc Lake	E 2802117	unknown	28	30	300	0.03
ROE175	Talc Lake	E 2802117	unknown	30	32	1010	0.10
ROE175	Talc Lake	E 2802117	unknown	32	34	560	0.06
ROE175	Talc Lake	E 2802117	unknown	34	36	160	0.02
ROE175	Talc Lake	E 2802117	unknown	36	38	155	0.02
ROE175	Talc Lake	E 2802117	unknown	38	40	285	0.03
ROE175	Talc Lake	E 2802117	unknown	40	42	1620	0.16
ROE175	Talc Lake	E 2802117	unknown	42	44	250	0.03

RHDD0013	Talc Lake	E 2802117	½Core	23	24	145	0.01
RHDD0013	Talc Lake	E 2802117	½Core	24	25	655	0.07
RHDD0013	Talc Lake	E 2802117	½Core	25	26	535	0.05
RHDD0013	Talc Lake	E 2802117	½Core	26	27	500	0.05
RHDD0013	Talc Lake	E 2802117	½Core	27	28	530	0.05
RHDD0013	Talc Lake	E 2802117	½Core	28	29	295	0.03
RHDD0013	Talc Lake	E 2802117	½Core	29	30	275	0.03
RHDD0013	Talc Lake	E 2802117	½Core	30	31	405	0.04
RHDD0013	Talc Lake	E 2802117	½Core	31	32	570	0.06
RHDD0013	Talc Lake	E 2802117	½Core	32	33	1020	0.10
RHDD0013	Talc Lake	E 2802117	½Core	33	34	380	0.04
RHDD0013	Talc Lake	E 2802117	½Core	34	35	310	0.03
RHDD0013	Talc Lake	E 2802117	½Core	35	36	280	0.03
RHDD0013	Talc Lake	E 2802117	½Core	36	37	245	0.02
RHDD0013	Talc Lake	E 2802117	½Core	37	38	245	0.02
RHDD0013	Talc Lake	E 2802117	½Core	38	39	470	0.05
RHDD0013	Talc Lake	E 2802117	½Core	39	40	205	0.02

Table 2. Historic Drilling Intercepts

Appendix 1 – Kairos Minerals – Roe Hills Project JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 PXRF Analysis on HQ/NQ2 core and RC chips using a handheld Olympus Innovex Delta Premium (DP4000C model) Portable XRF analyser. Measurements were taken on surface of the core and depth intervals recorded. HQ/NQ sized cores were sawn with manual brick saw and half split prior to sampling and submitted to the lab. Half core samples submitted for highest quality and best representation of the sampled material and sample intervals are checked by the supervising geologist and field technician throughout the sampling process. RC samples are split on a 1 metre sample interval at the rig cyclone. All sampling is based on either diamond drill core or RC chips. Sample selection is based on geological logging and sampled to geological contacts. Individual assay samples typically vary in length from a minimum of 0.2m and a maximum length of 1.2m for core samples and 1m individual or 4m composite samples for RC chips.
Drilling techniques	• Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	• All drilling carried out by DDH1 Drilling using a UDR top drive multi-purpose RC/diamond drill rig. Tri-cone rock roller bit was used to drill from surface till competent rock was encountered. The hole was then completed with a HQ3/HQ 3metre to NQ2 six metre barrel. Core is continually oriented using Reflex ACT II RD digital core orientation tool.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between 	 Diamond core is logged in detail at site by supervising geologists and recorded in the Company's database. Overall recoveries are >95% and there was no significant core loss or significant sample

Criteria	JORC Code explanation	Commentary
	sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	recovery problems. Diamond core was reconstructed into continuous runs on an angle iron cradle for orientation marking. Depths are checked against depth given on core blocks during the drilling process by the Senior Driller.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Geologic logging is carried out on the core and recorded as qualitative description of colour, lithological type, grain size, structures, minerals, alteration and other features. All core is continually photographed using a high resolution digital camera. Geotechnical logging comprises recovery and RQD measurements.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Cores were sawn and half split prior to sampling and submitted to the lab. Half core samples submitted for highest quality and best representation of the sampled material. Duplicates not required. Cut sheets prepared and checked by geologist and field technician to ensure correct sample representation. All samples were collected from the same side of the core to ensure consistent representative sampling.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples were submitted to Intertek Genalysis Laboratories Kalgoorlie for sample preparation and couriered to Perth for multi-element analysis by sodium peroxide fusion followed by ICP-OES finish. Gold analyses were carried out via the FA 25/OE or MS technique being Fire Assay with 25g lead collection fire assay in new pots, analysed by Inductively Coupled Plasma mass Spectrometry. Standards, checks, blanks were introduced regularly throughout each sample batch. Field reading of multi-elements are estimated using Olympus Innovex Delta Premium (DP4000C model) handheld XRF analyser prior to laboratory analysis.

Criteria	JORC Code explanation	Commentary
ontena		 Reading times employed was 15 sec/beam for a total of 30 sec using 2 beam Geochem Mode. Handheld XRF QAQC includes supplied standards and blanks
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Primary data was collected using Excel templates utilizing lookup codes on laptop computers by Senior Supervising Geologists.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill collars surveyed by GPS with an accuracy of +/- 5m. All Roe Hills hole collars are in MGA94 Zone 51 (GDA94). All Kairos holes are down hole surveyed with north seeking gyro
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Minimal sample spacing for assay samples is 15cm and maximum sample spacing is 1.1m. Sample spacing width is dependent on geological or grade distribution boundaries. No sample compositing will be applied to diamond core. 2-4m composites may be submitted as considered appropriate for initial phases of RC sampling.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Diamond drill holes oriented to both the west and east in order to effectively test variable dips. Holes are designed to intersect the geological contacts as close to perpendicular as possible.
Sample security	The measures taken to ensure sample security.	 All samples are collected in the field at the project site by Kairos personnel. All samples are delivered to the laboratory by reputable courier in secure numbered polyweave/calico bags.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	• N/A

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Kairos Limited owns 100% of the tenements. The project consists of 8 EL's & (8 PL's under application) E28/2117, E28/2118, E28/2585, E28/1935, E28/2594, E28/2593, E28/2548, E28/2495, P28/1292, P28/1293, P28/1294, P28/1295, P28/1296, P28/1297, P28/1298, P28/1299, P28/1300 The Project is Located on Cowarna Downs & Madonnia Downs Pastoral leases.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Significant past work has been carried out by other parties for both Ni and Au exploration including, surface geochemical sampling, ground electromagnetic surveys, RAB, AC, RC and DD drilling. This is acknowledged in past ASX announcements.
Geology	• Deposit type, geological setting and style of mineralisation.	• Target is Archean aged shear zone hosted gold mineralisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Co ordinates and other attributes of diamond drillholes are included in the release.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Data aggrega tion methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Exploration results will be reported length- weight average where applicable, no cut-off grade applied.
Relation ship between minerali sation widths and intercep t lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	All intercepts reported are measured in down hole metres.
Diagram s	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Suitable summary plans have been included in the body of the report.
Balance d reportin g	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All relevant results have been reported
Other substant ive	 Other exploration data, if meaningful and material, should be reported including 	 Geophysical surveys are designed and managed by Newexco Services Pty Ltd.

Criteria	JORC Code explanation	Commentary
explorati on data	(but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Moving in-loop Transient Electromagnetic surveying was completed by Merlin Geophysical Solutions Pty Ltd. Geophysical surveying employed a SMARTemV receiver system, an EMIT Fluxgate magnetic field sensor, Zonge ZT-30 transmitter and 200m x 200m transmitter loops. Survey stations were spaced 100m along line and lines were spaced 200m. Interpretation of the aeromagnetics, gravity and electromagnetic data is being undertaken by Newexco Services Pty Ltd. Drill Sampling Gold and multi-element analysis is being conducted routinely on all samples for a base
		metal suite and potentially deleterious elements including Al, As, Co, Cr, Cu, Fe, Mg, Ni, S, Ti, Zn plus Au, Pt, Pd
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further RC and Diamond drilling is planned Down Hole Electro-Magnetics (DHEM) is proposed in conjunction with the already successful geochemical and geological modelling. Refer to diagrams in the body of the release