

ASX ANNOUNCEMENT

05 OCTOBER 2016

MT YORK GOLD RESOURCE ALMOST DOUBLES TO JUST OVER A QUARTER OF A MILLION OUNCES

Strong potential for further significant increases with additional ~10km of unexplored strike comprising well-defined gold-hosting sequence

<u>Highlights:</u>

- Mt York emerging as a significant WA gold project with the overall JORC 2012 Mineral Resource inventory increasing from 135,000oz to 258,000oz following completion of Phase 2 JORC Mineral Resource estimates for the Main Hill and Breccia Hill deposits.
- The upgraded Indicated and Inferred Resource now stands at

5.692Mt @ 1.42g/t for 258,000oz Au, comprising:

Previously announced Indicated and Inferred Resources (ASX announcement 1 August 2016)

- Iron Stirrup 714Kt at 1.99g/t for 45,000oz Au
- Old Faithful 2.069Mt at 1.37g/t for 90,000ozAu

Newly completed Indicated and Inferred Resources - detailed in today's ASX announcement

- Main Hill 1.641Mt at 1.26g/t for 66,000oz Au
- Breccia Hill 1.269Mt at 1.40g/t for 57,000oz Au
- Resource estimate for the Zakanaka deposit is incomplete due to insufficient historical data. This represents high priority exploration target.
- All deposits remain open along strike and at depth within well-defined mineralised zones, providing rapid resource expansion opportunities.
- High-grade historical intercepts below both Main Hill and Breccia Hill resource boundary highlight the potential for high-grade shoots within the broader mineralised envelope.
- "Hinge Zone" separating Main Hill and Breccia Hill deposits re-interpreted as high priority target previously untested.
- Multiple new lithium and gold targets defined at Mt York following recent review of soil geochemistry.
- Aggressive exploration RC and diamond drilling program underway at Mt York with initial focus on the Old Faithful and Iron Stirrup gold deposits.

Kairos Minerals (ASX: KAI) is pleased to advise that the Indicated and Inferred gold resource at its 100 per cent-owned Mt York Lithium-Gold Project, located 120km southeast of Port Hedland in WA's East Pilbara region, has almost doubled to 5.692 million tonnes grading 1.42 g/t for a total of 258,000oz (Refer to detailed resource tables below).

The strong result comes less than two months after Kairos announced its Phase 1 JORC 2012 compliant Mineral Resource estimate for Mt York comprising Indicated and Inferred Resources of 2.8 million tonnes grading 1.53g/t Au for 135,000oz (see ASX release dated August 1, 2016).

The increased Phase 2 Resource follows the re-assessment of the existing resources at the Main Hill and Breccia Hill deposits, adding to the previously announced Resources at the Iron Stirrup and Old Faithful prospects.

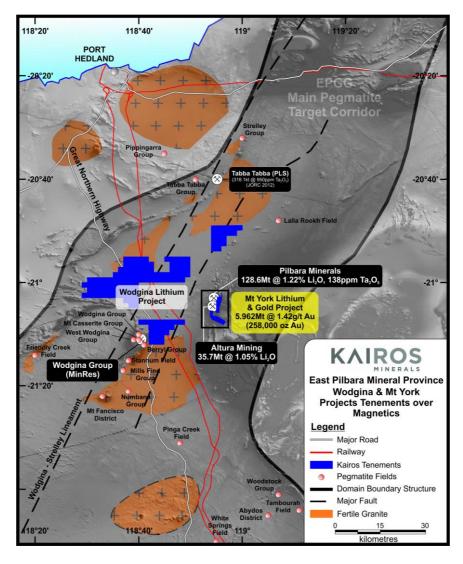


Figure 1 – Mt York Project Location Map, Pilbara, W.A.

Mt York Project - JORC 2012 Mineral Resources

The total JORC 2012 Mineral Resource estimate for the Mt York Project, encompassing the Iron Stirrup, Old Faithful, Breccia Hill and Main Hill deposits and reported using a 0.5g/t gold cut-off grade, is set out in Table 1 below and deposit locations in Figure 3.

Prospect	Material	Category	Tonnes (kt)	Au (g/t)	Ounces (koz)
	D ece als	Indicated	421	2.22	30
Iron Stirrup	Fresh	Inferred	293	1.67	15
	Transitional	Indicated	325	1.18	12
	Tansitionai	Inferred	327	1.37	14
Old Faithful	Fresh	Indicated	609	1.41	27
	Flesh	Inferred	807	1.41	37
	Oxide	Indicated	361	0.99	11
	Uxide	Inferred	339	1.16	12
Main Hill	m 1	Indicated	298	1.55	15
	Transitional	Inferred	560	1.26	23
	Fresh	Inferred	83	1.85	5
	Oxide	Indicated	157	1.24	6
	Oxide	Inferred	154	1.01	5
Breccia Hill	Transitional	Indicated	275	1.4	12
	Tansitional	Inferred	466	1.33	20
	Fresh	Inferred	217	1.96	14
То	tal Indicated		2,446	1.46	113
То	otal Inferred		3,246	1.40	145
Total In	dicated + Infer	red	5,692	1.42	258

Table 1 – October 2016 Kairos Minerals JORC 2012 Mineral Resource Table for Iron Stirrup, Old Faithful Prospects, Breccia Hill and Main Hill (reported at a 0.5g/t cut-off)

The Mineral Resource estimates for the Breccia Hill and Main Hill deposits are set out in Tables 2 and 3 below, reported at a 0.5g/t cut-off:

Table 2 - October 2016 Kairos Minerals JORC 2012 Mineral ResourceTable for Breccia Hill (reported at a 0.5g/t cut-off)

	Indicated		Inferred		Total				
Material	Tonnes (kt)	Au (g/t)	Ounces (koz)	Tonnes (kt)	Au (g/t)	Ounces (koz)	Tonnes (kt)	Au (g/t)	Ounces (koz)
Oxide	157	1.24	6	154	1.01	5	311	1.13	11
Transitional	275	1.40	12	466	1.33	20	741	1.36	32
Fresh				217	1.96	14	217	1.96	14
Total	432	1.35	18	837	1.43	39	1,269	1.40	57

Indicated		Inferred		Total					
Material	Tonnes (kt)	Au (g/t)	Ounces (koz)	Tonnes (kt)	Au (g/t)	Ounces (koz)	Tonnes (kt)	Au (g/t)	Ounces (koz)
Oxide	361	0.99	11	339	1.16	12	700	1.07	23
Transitional	298	1.55	15	560	1.26	23	858	1.36	38
Fresh				83	1.84	5	83	1.84	5
Total	659	1.24	26	982	1.27	40	1,641	1.26	66

Table 3 - October 2016 Kairos Minerals JORC 2012 Mineral ResourceTable for Main Hill (reported at a 0.5g/t cut-off)

The Resource estimate is the result of Kairos' ongoing review of the gold potential at Mt York.

The updated Mineral Resource was independently estimated by Auralia Mining Consulting Pty Ltd as part of a geological review and reinterpretation of the extensive historical database for the project. This work has been aimed at updating and reestimating the resource estimates that were in place when Kairos acquired the Mt York Project earlier this year.

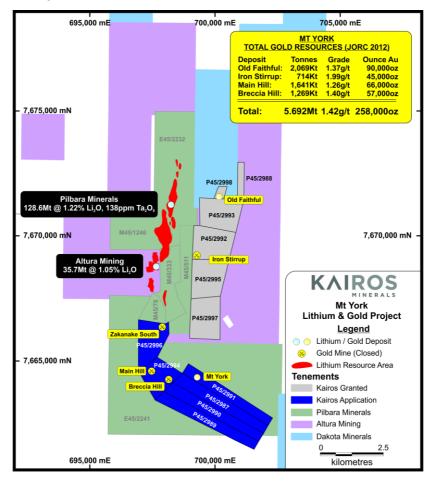
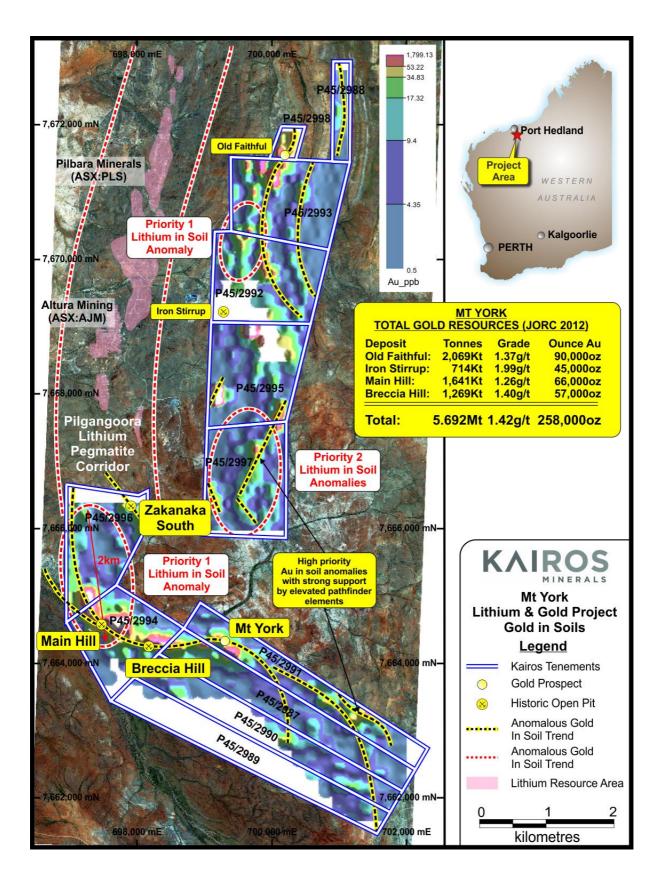



Figure 2 – Mt York Project Location, Tenements and Key Gold Deposits

Figure 3 - Mt York Project, Gold and Lithium Targets

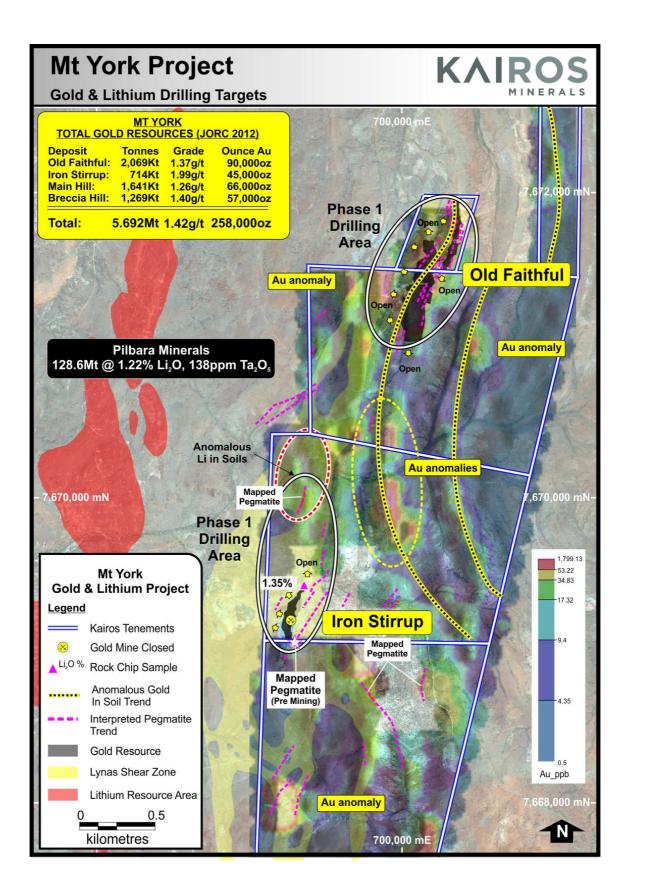


Figure 4 - Mt York Project, Gold and Lithium Phase 1 Drill Targets

KAIR

MINERALS

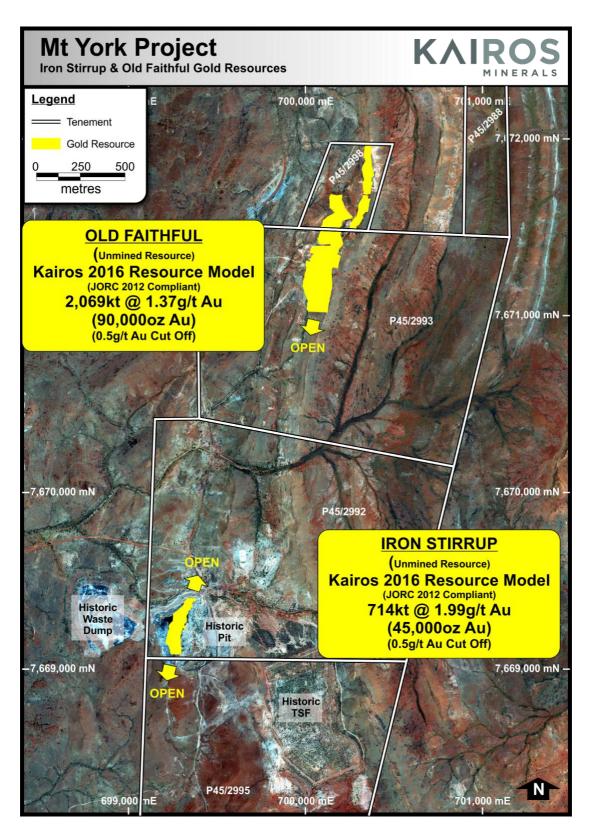


Figure 5 - Mt York Project, Iron Stirrup and Old Faithful Gold Resource Models

KAIR

MINERALS

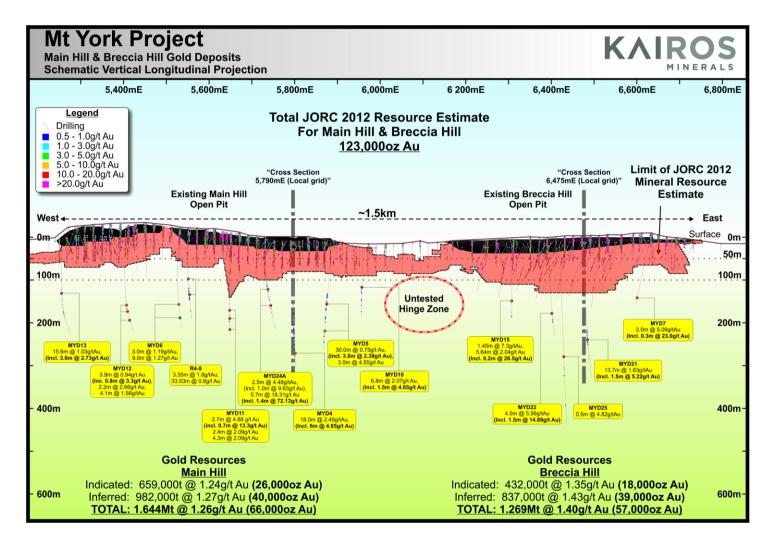


Figure 6 - Schematic Long Section of the Main Hill and Breccia Hill Deposits

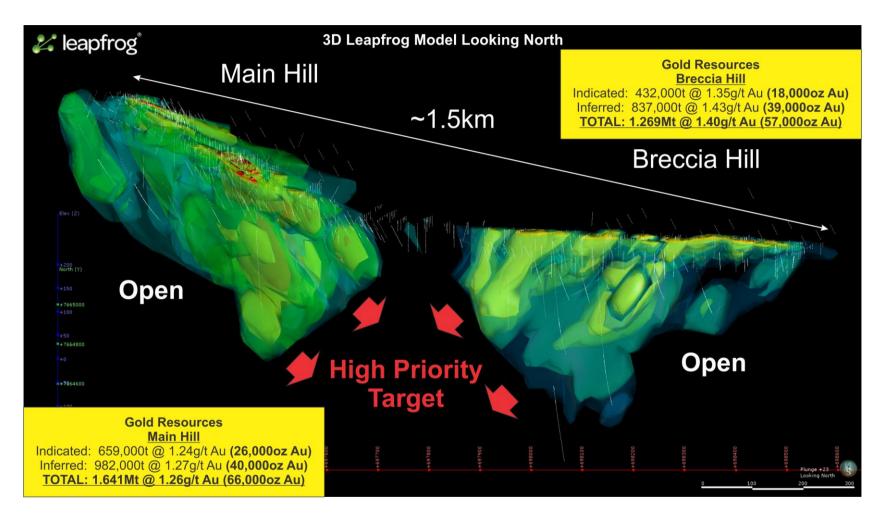
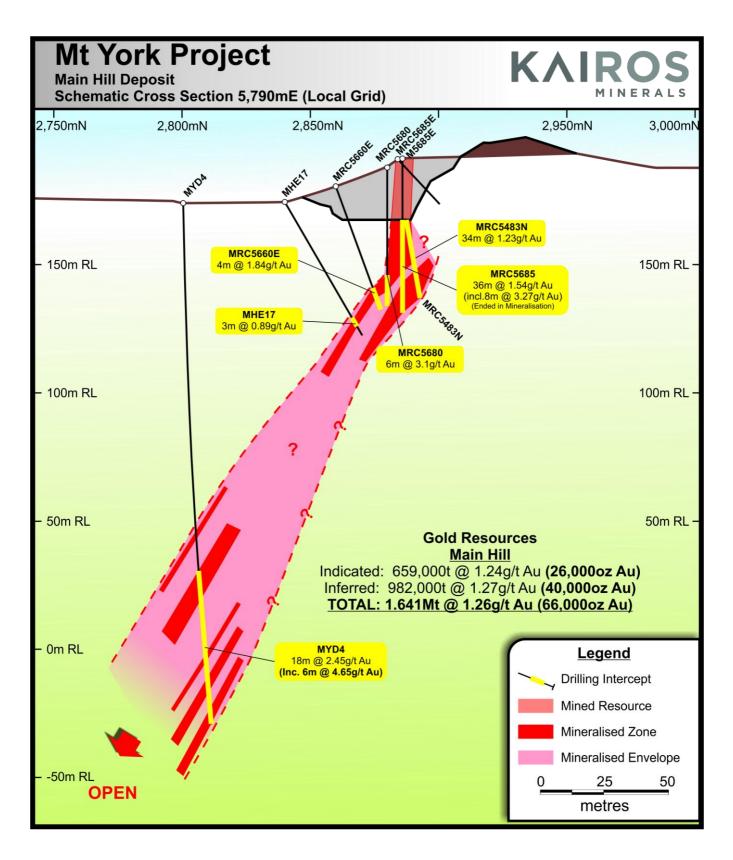
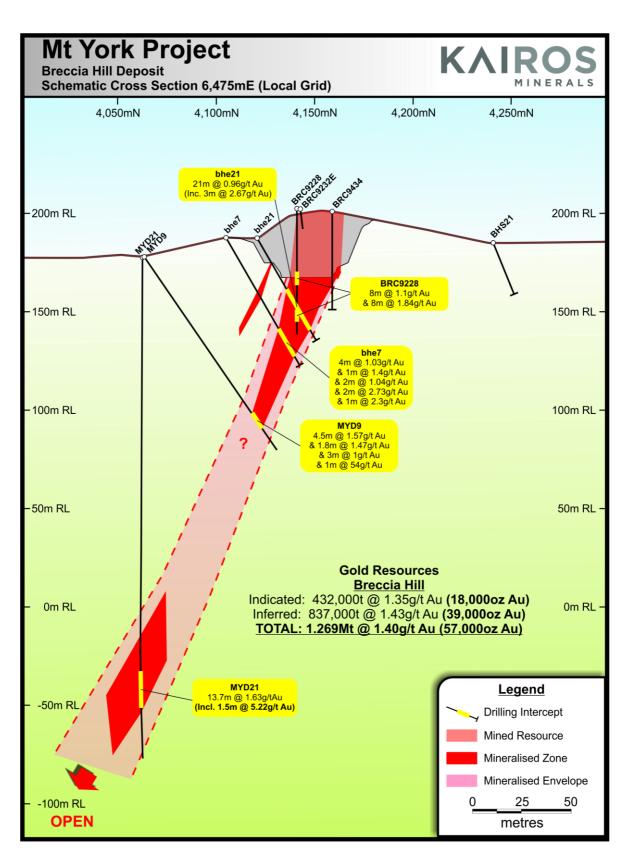




Figure 7 - Mt York Main Hill & Breccia Hill Deposits with Hinge Target

KAIRC

MINERALS

Mt York Project - Background and Gold Potential

The Mt York Lithium-Gold Project is located 120km south-east of Port Hedland in WA's East Pilbara region, immediately adjacent to the (ASX: PLS) World-class Pilgangoora Lithium-Tantalum Project.

The main gold deposits at the Mt York Project include Main Hill, Breccia Hill, Old Faithful and Iron Stirrup. The Zakanaka Deposit was "trial" mined late in the life of the historic Lynas Find operation Lynas Gold NL) and currently has insufficient historical data associated with it to enable calculation of a JORC 2012 compliant resource. As a consequence Zakanaka is not currently included in Kairos' resource estimate for the Mt. York Project.

The Main Hill and Breccia Hill Deposits include existing shallow open pits which were mined in the mid-1990s at historically low gold prices of less than US\$300 per ounce. Significant depth extensions of the gold lodes beneath these pits were recently identified by Kairos from a review of historical data (refer to ASX release dated 28 June 2016).

Project History

The Main Hill and Breccia Hill Gold Deposits are 2 of 5 main historical gold deposits (Main Hill, Breccia Hill, Iron Stirrup, Zakanaka, McPhees) which defined the Lynas Find Gold Project, owned and operated by Lynas Gold NL during the mid – 1990's. The Old Faithful Deposit, situated several kilometres north of Iron Stirrup, was discovered and broadly defined by Lynas Gold NL during the same period however it was never developed and remains as an unmined resource.

The Main Hill and Breccia Hill prospectss were originally explored by Lynas Gold NL in 1986 with an initial resource estimate being calculated later that year. Other companies to have held an interest in the project include Esso Exploration, Amax Iron Ore Corporation (Amax), Carpentaria Exploration Pty Ltd, Australian Consolidated Minerals (ACM) and Trafford Resources.

Gold mining of the oxide zone commenced at Main Hill/Breccia Hill in February 1995 via shallow open pits to a maximum depth of only about 80 vertical metres. The oxide material has for the majority been mined out however some remnant material remains behind. It is evident that the mineralisation often weakens near the base of the pits but improves in width and grade down dip from this at least within the area of current broad spaced drill testing.

The operations provided a significant contribution to the total production at Lynas Find which recovered 125,493oz of gold from 2.114 million tonnes of ore with an average grade of 1.85g/t gold during the 4 year period from 1994 to closure of the mines in 1998 (Lynas 1998 Annual report).

Regional Geology

The Mt York Project lies within the Pilgangoora Greenstone Belt of the Archaean Pilbara Craton. The Pilbara Craton is composed of greenstone and sediment units which have been deformed by tight isoclinal folds during the intrusion of diapiric granites. The Pilgangoora Greenstone Belt covers an area of about 600 square kilometres and forms the western part of the large central greenstone belt of the east Pilbara (Hickman & Lipple, 1978 and Hickman & Gibson, 1982). The Carlindi Batholith bounds the greenstone belt to the north-east and north-west; the Yule Batholith lies to the south-west and the internal Strelley granitoid lies to the east.

The Pilgangoora Greenstone Belt is dominated by the Pilgangoora Syncline, which contains a sequence of steep dipping, inward younging volcano-sedimentary rocks belonging to the two lower groups of the Pilbara Supergroup, the Warrawoona, and Gorge Creek Groups. The Warrawoona Group dominates the lithology of the synclinal limbs, whilst the Gorge Creek Group conformably overlies the Warrawoona Group and dominates the lithology within the synclinal core. Throughout the Pilgangoora Syncline major D2 fold axes of the synclinal core have been rotated by two major D3 conjugate folds associated with faults and quartz veining (Hickman, 1983).

Local Geology

The western edge of the Pilgangoora Syncline is stoped out by regional granite, partly along north-striking faults. A gently dipping, anticlinally domed dolerite exhibiting high deformation structures lies on the western side of the syncline. Gently dipping pegmatite sills associated with the waning phase of granite intrusion intrude the dolerite. These pegmatites are the source of lithium - tantalum mineralisation in the area. A serpentinised peridotite forms a semi-continuous member along the eastern edge of the dolerite. Just north of the Zakanaka gold deposit, the peridotite is structurally thickened and swings around the doleritic anticlinal core to strike north north-west. A mixed suite of talc-carbonate-chlorite schists, peridotite and dolerite, lie to the east of the serpentinised peridotite. This hybrid suite is extensively developed to the west of Old Faithful and contains a thin chert marker horizon and heavily brecciated, coarsely amphibolitised lenses. This suite is missing at Iron Stirrup, and the serpentinised peridotite is in direct contact with the Iron Stirrup ultramafic.

The Iron Stirrup ultramafic is the main host rock for gold mineralisation at the Old Faithful, Iron Stirrup, and Darius prospects. The unit is dominantly talc-carbonate schist with some talc- carbonate-chlorite and talc-

chlorite assemblages. The suite is highly deformed and is thought to have a volcanic and komatiitic affinity, possibly in association with Archaean sea-floor spreading or rifting. The schist diverges southward from the northern parts of the Old Faithful deposit. Drilling and mapping of this area have shown that the schist is in fact part of the Iron Stirrup ultramafic.

A suite of black to glassy cherts interbedded with silicic volcanics and/or tuffs lie to the east of the Iron Stirrup ultramafic. This sequence can be traced as a continuous unit through the Project area adjacent to the Iron Stirrup ultramafic. To the east of the felsic-chert sequence lies a broad, sparsely outcropping basalt unit. Interflow silicic layers or folded remnants of thin felsic-chert units are observed within the basalts to the south-east of the Iron Stirrup and Old Faithful prospects.

A major zone of intermediate volcanic lies to the south of Iron Stirrup. The unit contains chlorite, epidote and thin, possibly interflow, chert-limonite lenses, which are sometimes quartz veined and gossanous in appearance. The Cleopatra deposit is contained within a suite of chlorite-epidote altered andesitic volcanic.

The Main Hill and Breccia Hill deposits are hosted within an extensive sequence of banded iron formation (BIF) on the eastern limb of the Pilgangoora Syncline and traceable over a strike length of at least 7 kilometres.

The area contains the older Warrawoona Group of basalts, felsic volcanic, sediments and cherts and the younger Gorge Creek Group of medium to coarse-grained clastic sediments and schists. These have been metamorphosed to upper greenschist-lower amphibolite grade facies (Koning, 1990). The Archaean banded iron formation (BIF) hosting the gold deposits being described is thought to correlate with the upper part of the Euro Basalt - one of the upper members of the Warrawoona Group which consists of a mafic volcanic sequence between 150 to 450 m thick (Koning, 1990).

The BIF is unconformably overlain to the southwest by a lenticular pebble-cobble conglomerate horizon up to 15m thick belonging to the Lalla Rookh Sandstone of the Gorge Creek Group. The basal zone of the conglomerate may be sheared and contains coarse pyrrhotite, minor arsenopyrite-loellingite, trace pyrite, chalcopyrite, sphalerite and sub-economic gold mineralisation (Koning, 1990).

Three units have been observed within the BIF:

- I. Basal unit of finely laminated shale up to 10m in thickness, overlain by a highly siliceous chert horizon with regular chert and thin intercalated stilpnomelane bands and porphyroblasts of pink garnet.
- II. The middle unit contains cummingtonite-grunerite with recrystallised chert bands, magnetite and traces of pyrrhotite, arsenopyrite and anomalous, but subeconomic gold mineralisation.
- III. The upper unit is a siliceous cummingtonite-grunerite chert up to 40m in thickness. The intense shearing within the unit is associated with strong concentrations of pyrrhotite, arsenopyrite- loellingite, minor gold and trace chalcopyrite, galena and sphalerite.

Oxide and Primary sulphide associated gold mineralisation has been intersected by historical drilling within the BIF horizon over a strike length of at least 3 km. The mineralisation is shear controlled and is commonly associated with limonite, secondary silica, graphite, pyrolusite and supergene gold.

The BIF horizon is traceable by surface mapping and in detailed aeromagnetic data over a strike length of at least 7 kilometres. The mineralised zones are currently limited by a lack of drill information.

The attitude of the BIF is variable with the unit generally dipping west - southwesterly. At Gossan Hill and from the central part of Breccia Hill to the central part of Main Hill, the dip is 60 degrees.

Two major faults are recognized at the surface (Koning & Munt, 1986). The first occurs at Gossan Hill and trends at 330 degrees magnetic with the eastern side being upthrown. The second major fault occurs at Main Hill and trends at 350 degrees magnetic with the eastern side being upthrown.

Mineralisation

The gold mineralisation at Main Hill and Breccia Hill occurs as electrum at the interface between the two arsenic minerals. At the surface, gold mineralisation is normally associated with brecciated zones and/or gossan rich zones close to the hanging wall contact of the BIF.

Within the oxide zone, gold mineralisation has a strong tendency to occur within the more siliceous lithology of the BIF horizon. In addition, better gold values are often associated with the occurrence of limonite.

In the primary zone, gold mineralisation is wholly contained within arsenopyriteloellingite assemblages. The better mineralised sections are associated with major shear zones, heavily impregnated with pyrrhotite and coarsely crystalline arsenopyrite. The primary mineralisation is contained in parallel lodes dipping 60 degrees to the west and striking approximately 330 (local grid). A secondary mineralised zone in the north of the deposit strikes at 030 and dips 20° to the east.

Weathering

The BIF as observed at surface is totally different to the grunerite-magnetite chert which is its equivalent below the base of oxidation. The gold mineralisation above the base of oxidation appears to be controlled by chemical changes within the host rock caused by weathering effects (Koning, 1987).

A typical profile through a subvertically dipping mineralised grunerite chert would be (from Koning, 1987) – from surface to a variable depth of 5-20 metres recrystallised chert with limonite occurrence.

This lithology is underlain by a weathered brown, crystalline grunerite chert. The weathered grunerite chert is itself underlain by a 15-20m thick zone of greenish clay. This zone occurs only within the weathered BIF horizon. Below the clay zone fresh grunerite chert is observed.

<u>Next Steps</u>

All the key tenements which comprise the Mt York Project have now been granted.

Initial POW Applications have been approved for PL's 45/2992, 2993, 2995, 2997, 2998, and 45/2988

Initial POW Applications have been submitted for PL's P45/2990, 2991, 2994, 2996 and P45/2987, 2989 are currently being assessed.

Kairos has commenced an extensive program of exploratory RCP/diamond drilling with the initial focus on the Old Faithful and Iron Stirrup Gold Deposits.

A detailed soil sampling programme has recently been completed over the Mt York Project and has been successful in identifying numerous extensive and previously unrecognised gold and lithium – tantalum soil anomalies and anomalous trends throughout the project area (Refer ASX Announcement dated September 21, 2016). These are being assessed in detail and will assist with the definition of additional high priority drill targets.

Key targets will include:

- Depth and strike extensions and repetitions to the known gold mineralization at the Old Faithful Deposit
- Depth and strike extensions to the known gold mineralisation in close proximity to the current base of the Iron Stirrup Pit in order to assess the potential for near-term pit expansion opportunities;
- Depth and strike extensions representing potential future underground mining opportunities;
- Open pit potential to the north and south along strike within the defined mine sequence;
- Initial testing of high priority gold and lithium tantalum in soil anomalies/trends

Management Comment

Kairos Managing Director Joshua Wellisch said the Company's gold and lithium strategy was rapidly gaining momentum, with the re-evaluation of the historical deposits at Mt York delivering outstanding results.

"In just a few months we have increased our JORC 2012 compliant Mineral Resource inventory from zero to 258,000oz with more to come as further resource evaluations are completed," he said. "This is an impressive result which confirms that Mt York is a significant emerging WA gold project with outstanding growth potential.

"The known deposits cover roughly one-third of a strongly mineralised 10km-long horizon – which offers outstanding potential for new discoveries. In addition, all of the known deposits remain open at depth and along strike and present outstanding, walk-up drilling targets".

In addition, the results from the recently completed soil sampling program have outlined numerous highly anomalous gold and lithium – tantalum trends which will add to Kairos' growing list of high-priority drill targets. In particular, the soil survey has outlined strong lithium-caesium-tantalum anomalism extending over at least 2km providing compelling evidence for continuation of the Pilgangoora LCT Pegmatite corridor within our southern tenements.

"Having both gold and lithium targets to test is a great position to be in given the outstanding performance of both commodities."

"Drilling has now commenced ahead of schedule and we expect to be in a position to announce drill results within the coming weeks. The entire team has worked tirelessly to get the Mt York Project drill-ready and we are all very much looking forward to delivering positive results from this eagerly anticipated maiden drilling campaign."

ENDS

For further information, please contact:

Investors:Media:Mr Joshua WellischNicholas Read/Paul ArmstrongManaging DirectorRead CorporateKairos Minerals LimitedPh: 08 9388 1474

COMPETENT PERSON STATEMENT:

The information in this report that relates to the Mineral Resources based on information compiled by Mr Christopher Speedy who is a Member of Australian Institute of Geoscientists working for Auralia Consulting Pty Ltd. Mr Speedy has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person (CP) as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Speedy consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. Where the Company refers to the Mineral Resources in this report (referencing this release made to the ASX), it confirms that it is not aware of any new information or data that materially affects the information included in the announcement and all material assumptions and technical parameters underpinning the resource estimate with that announcement continue to apply and have not materially changed.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 All drilling results presented by Kairos Minerals Limited (the "Company") for the Breccia Hill and Main Hill deposit are summarised from historical work completed by Carpentaria Exploration Company Pty Ltd and Lynas Gold NL during exploration and mining activities for the period 1985 to 1996. The results were achieved via a combination of RAB, RC and diamond drilling. Holes were generally angled towards grid east to provide optimum intersections through the targeted primary sequence. For the eastern lode in the north of Main Hill the holes were angles to the west. Holes were drilled vertical to delineate the oxide material. Industry standard sampling procedures have been adhered to. RC samples were collected typically as 1m intervals using riffle splitters. Diamond drill core was geologically logged to identify intervals for sampling. Sample intervals are generally 1m and reflect geological/lithological contacts. Samples were submitted to a contract laboratory for crushing, pulverizing to produce a 50g charge for fire assay.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Diamond drilling was mostly carried out with NQ2 sized equipment, using standard tube. For RC holes, a 5 1/4"face sampling bit was used. For deeper holes, RC holes were followed with diamond tails.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Recoveries from historical sampling techniques are unknown, only Reverse Circulation (RC) and Diamond Drilling (DD) drill holes are used in the resource estimate for the primary mineralisation (Transitional and Fresh material).
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 RC and diamond drilling was logged for various geological attributes. All drill holes were logged in full.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Core was cut in half to 1m samples or geological / lithological contacts. RC samples were riffle split at the rig and samples as single metre intervals. Samples were generally dry. Field duplicates were taken in the RC drilling. Sample preparation was conducted by a contract laboratory. Sample sizes are considered appropriate to correctly represent the gold mineralisation based on; the style of mineralisation, the thickness and consistency of the intersections, the sampling methodology and assay value ranges for Au.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 For the Carpentaria Gold & Lynas Gold NL drilling, the analytical technique used was a 50g fire assay. Samples were analysed by the Australian Assay Laboratories Group in Perth, Western Australia. Laboratory QA/QC includes the use of internal standards using certified reference material, blanks, splits and replicates. Laboratory splits and replicates were analysed and show good accuracy and no sign of bias.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections were visually verified by company geologists at Carpentaria and Lynas Gold NL. All assay reports were reported in electronic and paper format. It is assumed verification procedures were robust due to the operation of an effective mine.
Location of data points	 Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The majority of the holes drilled by Lynas Gold NL in 1987 and 1988 were surveyed by Zuideveld & Bennett (ZB) using a control point with an assumed RL of 500m. Holes from 1993 onwards were surveyed by Lynas Gold NL mine site staff surveyors. Lynas resurveyed all holes drilled by Carpentaria Gold. All drill hole coordinates were provided in local grid as well as in AMG. A simple translation has converted the drill hole coordinates to MGA Zone 51 and height to the AHD. Local grid is used for all estimation and reporting Down hole surveys were carried out using Eastman Single Shot cameras. Mine working cross checks support the locations of historic drilling. Topographic surface has been prepared from detailed ground and mine surveys.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Nominal hole spacing of the Carpentaria Gold and Lynas Gold NL drilling is approximately 20 metres along strike and 5m across strike. The mineralised domains have sufficient grade continuity in both geology and grade to be considered appropriate for the Mineral Resource and Ore Reserve estimation procedures and classification applied under the 2012 JORC Code.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Majority of the drill holes are angled to the east so that intersections are orthogonal to the expected trend of mineralisation for the mineralisation dipping to the west. Mineralisation dipping to the east, the holes are angled to the west so that intersections are orthogonal to the expected trend of the mineralisation. The oxide material, the majority of the holes are drilled vertical, as the oxide material is flat lying. No orientation based sampling has been identified in the data.
Sample security Audits or reviews	 The measures taken to ensure sample security. The results of any audits or reviews of sampling 	Unknown for historical samples.Review of the historical sampling techniques and
	techniques and data.	data by Christopher Speedy of Auralia found that all procedures and practices conform to industry standards.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownersh including agreements or material issues with third parties such as joint ventures, partnerships, overridir royalties, native title interests, historical sites, wilderness or national park and environmental setting. The security of the tenure held at the time of reportin along with any known impediments to obtaining a licence to operate in the area. 	 located within granted Prospecting Licence P45/2994, which is wholly owned by Kairos Minerals Pty Ltd. The tenements are in good standing with no
Exploration done by other parties	Acknowledgment and appraisal of exploration by oth parties.	 The Mt. York Lithium – Gold Project, Brecc Hill and Main Hill was discovered by Carpentaria Exploration Company Pty Ltd i 1986. Lynas Gold NL acquired the project i the early 1990's and mined a number of deposits as a successful open pit operation by that company between 1994 – 1998. Other companies to have explored the area include Austamax, MIM and Trafford Resources.
Geology	 Deposit type, geological setting and style of mineralisation. 	Regional Geology The Mt. York Lithium – Gold Project lies within the Pilgangoora Greenstone Belt of the Archaean Pilbara Craton. The Pilbara Craton is composed of greenstone and sediment units which have been deformed by tight isoclinal folds during the intrusion o diapiric granites. The Pilgangoora Greenstone Belt covers an area of about 600 square kilometres and forms the western part of the large central greenstone belt of the east Pilbara the Carlindi Batholit bounds the greenstone belt to the north-eas and north-west; the Yule Batholith lies to th south-west and the internal Strelley granito lies to the east.
		The Pilgangoora Greenstone Belt is dominated by the Pilgangoora Syncline, which contains a sequence of steep dipping inward younging volcano-sedimentary rock belonging to the two lower groups of the Pilbara Supergroup, the Warrawoona, and Gorge Creek Groups. The Warrawoona Group dominates the lithology of the synclinal limbs, whilst the Gorge Creek Group conformably overlies the Warrawoon Group and dominates the lithology within th synclinal core
		Local geology The Iron Stirrup ultramafic is the main host rock for gold mineralisation at the Breccia Hill and Main Hill prospects. The unit is dominantly talc-carbonate schist with some talc-carbonate-chlorite and talc-chlorite assemblages. The suite is highly deformed and is thought to have a volcanic, komatiitid affinity, possibly in association with Archaean sea-floor spreading or rifting. The Mount York tenements lie on the pactor limb of the Pilapagera Surgling
		eastern limb of the Pilgangoora Syncline. The area contains the older Warrawoona Group of basalts, felsic volcanic, sediments and cherts and the younger Gorge Creek Group of medium to coarse-grained clastic sediments and schists. These have been metamorphosed to upper greenschist-lowe amphibolite grade facies. Gold mineralisation in the area is contained withi

Criteria	JORC Code explanation	Commentary
		an Archaean banded iron formation (BIF). The BIF is thought to correlate with the upper part of the Euro Basalt - one of the upper members of the Warrawoona Group which consists of a mafic volcanic sequence between 150 to 450 m thick. The BIF is unconformably overlain to the southwest by a lenticular pebble-cobble conglomerate horizon up to 15m thick belonging to the Lalla Rookh Sandstone of the Gorge Creek Group. The basal zone of the conglomerate may be sheared and contains coarse pyrrhotite, minor arsenopyrite-loellingite, trace pyrite, chalcopyrite, sphalerite and sub-economic gold mineralisation
		Mineralisation The gold mineralisation at Breccia Hill and Main Hill is contained within a well foliated Talc- carbonate-magnetite-serpentite rock with associated pyrite and pyrrhotite. Within the oxide zone, gold mineralisation has a strong tendency to occur within the more siliceous lithology of the BIF horizon. In the primary mineralised zone (fresh rock), gold mineralisation is wholly contained within arsenopyrite-loellingite assemblages. The better mineralised sections are associated with major shear zones, heavily impregnated with pyrrhotite and coarsely crystalline arsenopyrite. The primary mineralisation is contained in parallel lodes dipping 60 degrees to the west and striking approximately at 330 (local grid). In the north of the Main Hill deposit a lode dipping to the east extends for approximately 150-200m striking approximately 030.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Drill hole collars used in the model are included in Appendix B for Breccia Hill. Drill hole collars used in the model are included in Appendix B for Main Hill. Comments relating to drill hole information relevant to the Mineral Resource estimate can be found in Section 1.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Exploration results are not being reported. Not applicable as a Mineral Resource is being reported. Metal equivalent values have not been used.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 All historical drilling has been oriented to intersect the targeted sequence at an optimum angle, i.e. orthogonal to strike and dip. The intercept summaries presented reflect down hole intersection lengths True widths have not been presented but

Criteria	JORC Code explanation	Commentary
		are estimated to be approximately 80% of the intersection length for most holes.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Relevant diagrams have been included within the ASX release.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 No exploration results are not being reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 All interpretations for the Breccia Hill & Main Hill mineralisation are consistent with observations made and information gained during previous mining at the Breccia Hill and Main Hill open pits. All interpretations for the Breccia Hill and Main Hill mineralisation are consistent with observations made in historic reports. Exploration including mapping, geochemical sampling has been completed elsewhere within the project area but is not relevant to the Mineral Resource Estimate.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 At Breccia Hill and Main Hill exploration RC and diamond drilling is planned to test for extensions and repetitions of the ore body both at depth and along strike to the north and south of the existing open pit.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	• The database has been systematically audited by the CP. Original drilling records were compared to the equivalent records in the database. No major discrepancies were found.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 No additional drilling has been carried out since mining in the mid 1990's. No site visit has been undertaken by the CP. A site visit is planned for the CP as part of a future MRE update.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 The confidence in the geological interpretation is considered to be high and is based on previous mining history. Geological logging has been used to assist identification of lithology and mineralisation. The deposit consists of a sub-vertical mineralisation zone. Limited infill drilling has supported and refined the model and the current interpretation is considered robust.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	 The Breccia Hill Mineral Resource area (in local grid) extends over a strike length of 950m (from 97,500mN – 98,450mN) and includes the 150m vertical interval from 200mRL to -60mRL The Main Hill Mineral Resource area extends over a strike length of 945m (from 98,450mN – 99,250mN) and includes the 150m vertical interval from 230mRL to 80mRL

Criteria	JORC Code explanation	Commentary
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and us of reconciliation data if available. 	 oxidation state (see section below). Drill hole data was coded using three dimensional domains reflecting the geological interpretation based on the structural, lithological, alteration and oxidation characteristics of the Mineral Resource. One metre composited data was used to estimate the domains. The domains were treated as hard boundaries and only informed by data from the domain. The impact of outliers in the sample distributions used to inform each domain was reduced by the use of grade capping. Grade capping was applied on a domain scale and a combination of analytical tools such as histograms of grade, Coefficient of Variation (COV) analysis and log probability plots were used to determine the grade caps for each domain. A top cut of 15g/t was used for the oxide material at Breccia Hill and 10 g/t for Primary Mineralisation.

- ellipsoid search was used with a minimum of 4 and a maximum of 32 samples.
 A dynamic search strategy was used with the search ellipse oriented to the semi-variogram model. The first pass was at the variogram range, with subsequent passes expanding the ellipse by factors of 1.5 and 2, then a final factor of 3 was used to inform
 - any remaining unfilled blocks. The majority of the Mineral Resource was informed by the first two passes, domains that were informed by the third and fourth pass were flagged with a lower resource classification or remain unclassified.
- No assumption of mining selectivity has been incorporated into the estimate.
- Only Au was estimated in the Mineral Resource.
- The deposit mineralisation was constrained by wireframes constructed using a 0.5g/t Au cut-off grade.
- Validation of Mineral Resource comprised comparing block grades against the data used to inform the estimate on a domain by domain basis, visual comparison of the informing data against the estimate and the use of swath plots showing grade trends by easting northing and elevation of the input data against the estimate.

Criteria	JORC Code explanation	Commentary
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	 Mineral Resource tonnage estimates are on a dry basis.
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 Mineral Resources are reported using a cut- off grade of 0.5 g/t Au for the Breccia Hill and Main Hill.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 The CP has assumed that the deposit could potentially be mined using open pit mining techniques. Economic open pit mining has previously occurred at the Breccia Hill and Main Hill deposit during a period of decreased economic sale factors, including a much reduced gold price. No assumptions have been made for mining dilution or mining widths, however mineralisation is generally broad. Mining dilution and ore loss will be incorporated into any Mineral Reserve works estimated from this Mineral Resource.
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made. 	 It is assumed that extraction of gold will be achieved by gravity and cyanide leaching methods for the mineralised lode, with recoveries greater than 90%.
Environmen-tal factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 No assumptions have been made regarding environmental factors. Historical open-cut mining has occurred at the Breccia Hill and Main Hill deposit. The Company will work to mitigate environmental impact as a result of any future mining or mineral processing.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Bulk density assumptions used in the resource estimate were from testing in the exploration programs and subsequent mining by Lynas Gold NL. Specific gravity was determined by water displacement with wax coating. A value of 2.10 t/m³ was used for oxide material, 2.39 t/m³ for transitional material and 2.90 t/m³ for fresh material.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 The Mineral Resource estimate is reported here in compliance with the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' by the Joint Ore Reserves Committee (JORC). The Mineral Resource at Breccia Hill and Main Hill was classified as Indicated and Inferred Mineral Resource based on data quality, sample spacing and lode continuity. The input data is comprehensive in its coverage of the mineralisation and does not favour or misrepresent in-situ mineralisation The definition of mineralised zones is based on high level geological understanding producing a robust model of mineralised domains. Validation of the block model shows good correlation of the input data to the estimated grades.

Criteria	JORC Code explanation	Commentary
		 The classification of Indicated and Inferred was made on the basis of continuity of structure and drill spacing. The Mineral Resource estimate appropriately reflects the view of the CP.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	 No audits or review of the Mineral Resource estimate has been conducted.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The lode geometry and continuity has been adequately interpreted to reflect the level of Indicated and Inferred Mineral Resource. A recognized laboratory has been used for all analyses. The Mineral Resource statement relates to global estimates of tonnes and grade.

	Collar				Orientation		
Hole	Easting (Local)	Northing (Local)	RL	Total Depth	Dip	Azimuth (Local)	
BRC7965	10,263	97,786	205	37	-90	-	
BRC7993E	10,194	97,791	193	66	-60	90	
BRC8220	10,220	97,819	206	40	-90	-	
BRC8225	10,223	97,818	206	45	-90	-	
BRC8225W	10,223	97,820	206	46	-60	270	
BRC8233	10,231	97,818	206	42	-90	-	
BRC8274E	10,175	97,816	193	70	-60	65	
BRC8276E	10,176	97,815	193	60	-80	90	
BRC8409W	10,206	97,838	204	60	-60	270	
BRC8410	10,208	97,838	204	56	-90	-	
BRC8410W	10,208	97,838	204	51	-70	270	
BRC8425W	10,223	97,839	201	50	-75	270	
BRC8435W	10,233	97,839	201	69	-60	270	
BRC8610W	10,209	97,860	201	40	-60	270	
BRC8642E	10,141	97,862	193	60	-60	65	
BRC8673E	10,173	97,861	204	50	-70	90	
BRC8675	10,175	97,859	204	50	-90	-	
BRC8698W	10,198	97,860	201	50	-80	270	
BRC8860	10,160	97,880	203	69	-90	-	
BRC8877	10,176	97,879	203	40	-90	-	
BRC8885	10,185	97,878	203	40	-90	-	
BRC9018E	10,117	97,898	192	56	-60	65	
BRC9042	10,143	97,900	203	60	-90	-	
BRC9050	10,149	97,900	203	35	-90	-	
BRC9050W	10,148	97,899	203	23	-80	270	
BRC9060	10,159	97,900	203	50	-90	_	
BRC9070	10,169	97,900	203	35	-90	-	
BRC9228	10,128	97,920	202	64	-90	-	
BRC9232E	10,131	97,920	202	46	-80	90	
BRC9240	10,139	97,920	202	50	-90	-	
BRC9243E	10,141	97,920	202	36	-60	90	
BRC9254	10,153	97,918	202	33	-90	-	
BRC9434	10,135	97,940	201	50	-90	-	
BRC9600	10,099	97,960	196	50	-90	-	
BRC9605E	10,104	97,962	190	64	-80	90	
B0000	10,102	98,001	201	20	-90	-	
B0005	10,102	98,001	200	25	-90	-	
B0090	10,105	98,001	199	12	-90	-	
B0095	10,095	98,000	201	21	-90	-	
B0465	10,065	98,038	193	15	-90	-	
B0403	10,003	98,039	193	13	-90	-	
B0470 B0475	10,075	98,039	193	25	-90	-	
B0845	10,046	98,080	193	17	-90	-	
B0845 B0850	10,048	98,080	192	23	-90	-	
B0855	10,051	98,080	193	20	-90	-	
B0855 B0860	10,055	98,080	192	20	-90	-	
B1035	10,035	98,100	193	19	-90		
B1035 B1040	10,035	98,100	191	21	-90	-	
		•					
B1045	10,044	98,100	191	18	-90	-	
B1050	10,050	98,100	191	24	-90	-	
B1420	10,020	98,136	190	13	-90	-	
B1425	10,024	98,137	190	19	-90	-	
B1430	10,029	98,138	190	25	-90	-	

Appendix B – Drill holes used in the Breccia Hill model.

	Collar				Orientation		
Hole	Easting (Local)	Northing (Local)	RL	Total Depth	Dip	Azimuth (Local)	
B1810	10,012	98,182	192	25	-90	-	
B6200	10,399	97,620	195	11	-90	-	
B6280	10,378	97,620	192	14	-90	-	
B6290	10,389	97,619	194	5	-90	-	
B6295	10,393	97,619	194	8	-90	-	
B6445	10,346	97,639	192	11	-90	-	
B6450	10,351	97,641	195	18	-90	-	
B6455	10,356	97,641	195	14	-90	-	
B6460	10,361	97,639	195	19	-90	-	
B6465	10,364	97,639	196	17	-90	-	
B6470	10,369	97,640	197	22	-90	-	
B6475	10,374	97,640	198	15	-90	-	
B6480	10,379	97,640	197	10	-90	-	
B6635	10,335	97,661	194	12	-90	-	
B6640	10,341	97,660	195	8	-90	-	
B6645	10,345	97,660	195	22	-90	-	
B6650	10,349	97,660	195	10	-90	-	
B6655	10,345	•	199	15	-90	-	
B6660	10,352	97,661 97,656	199	22	-90 -90	-	
	,		199	13			
B6665	10,364	97,657			-90	-	
B6670	10,371	97,659	196	21	-90	-	
B6675	10,374	97,659	196	15	-90	-	
B6830	10,330	97,682	200	15	-90	-	
B6840	10,338	97,681	200	12	-90	-	
B6850	10,349	97,681	199	10	-90	-	
B6855	10,352	97,680	198	9	-90	-	
B6860	10,359	97,685	195	20	-90	-	
B7010	10,311	97,700	204	20	-90	-	
B7015	10,314	97,702	206	20	-90	-	
B7020	10,320	97,701	205	10	-90	-	
B7025	10,323	97,701	205	7	-90	-	
B7030	10,329	97,701	203	7	-90	-	
B7035	10,334	97,700	202	10	-90	-	
B7200	10,301	97,719	208	16	-90	-	
B7205	10,305	97,719	207	7	-90	-	
B7210	10,310	97,719	207	9	-90	-	
B7215	10,315	97,719	207	20	-90	-	
B7220	10,321	97,718	207	22	-90	-	
B7230	10,330	97,719	201	25	-90	-	
B7295	10,297	97,717	210	22	-90	-	
B7400	10,301	97,741	204	14	-90	-	
B7405	10,306	97,741	203	20	-90	-	
B7410	10,311	97,742	200	9	-90	-	
B7475	10,275	97,739	210	21	-90	-	
B7480	10,281	97,740	210	20	-90	-	
B7485	10,287	97,741	206	11	-90	-	
B7490	10,291	97,741	206	18	-90	-	
B7495	10,297	97,738	200	10	-90	-	
B7455 B7660	10,262	97,759	207	21	-90	-	
B7665	10,267	97,758	208	21	-90	-	
B7670	10,207	97,758	203	16	-90	-	
B7670 B7675		97,759		23			
	10,276	•	206		-90	-	
B7680	10,282	97,760	206	17	-90	-	
B7685	10,285	97,759	206	17	-90	-	
B7690	10,291	97,760	202	19	-90	-	
B8225	10,223	97,821	205	9	-90	-	
B8230	10,229	97,820	206	12	-90	-	
B8235	10,235	97,820	204	16	-90	-	

		Collar			Orientation		
Hole	Easting (Local)	Northing (Local)	RL	Total Depth	Dip	Azimuth (Local)	
B8410	10,208	97,839	204	8	-90	-	
B8415	10,213	97,839	204	24	-90	-	
B8420	10,217	97,839	203	7	-90	-	
B8600	10,198	97,859	202	15	-90	-	
B8680	10,178	97,858	203	25	-90	-	
B8685	10,183	97,858	203	19	-90	-	
B8690	10,188	97,859	203	21	-90	-	
B8695	10,193	97,859	203	20	-90	-	
B8865	10,164	97,880	203	25	-90	-	
B8870	10,169	97,880	203	25	-90	-	
B8875	10,174	97,880	203	22	-90	-	
B8880	10,179	97,880	203	24	-90	-	
B9050	10,150	97,899	203	22	-90	-	
B9055	10,155	97,900	203	21	-90	-	
B9060	10,161	97,900	203	23	-90	-	
B9065	10,164	97,900	203	18	-90	-	
B9235	10,133	97,919	202	22	-90	-	
B9240	10,140	97,919	202	21	-90	-	
B9245	10,142	97,919	202	22	-90	-	
B9250	10,149	97,920	202	21	-90	-	
B9600	10,099	97,960	196	19	-90	-	
B9605	10,105	97,960	198	20	-90	-	
B9610	10,109	97,960	199	7	-90	-	
B9611	10,110	97,960	199	20	-90	-	
B9615	10,114	97,960	199	19	-90	-	
B9620	10,120	97,960	199	17	-90	-	
B9625	10,124	97,960	199	22	-90	-	
BHE1	10,053	97,968	185	75	-60	46	
BHE10	10,116	97,860	188	70	-60	46	
BHE11	10,015	98,013	178	75	-60	46	
BHE12	10,019	98,043	179	60	-60	46	
BHE13	10,340	97,631	188	75	-60	46	
BHE14	10,321	97,639	187	80	-60	46	
BHE15	10,321	97,816	188	70	-60	46	
BHE15	10,183	97,788	188	75	-60	46	
BHE17	10,172	97,802	187	85	-60	46	
BHE18	10,168	97,825	187	50	-49.5	46	
BHE19	10,157	97,840	187	40	-49.5	46	
BHE2	10,068	97,953	187	70	-45.5	46	
BHE20	10,127	97,869	185	50	-49.5	40	
BHE20 BHE21	10,127	97,909	187	60	-49.5	40	
BHE21 BHE22	10,111	97,816	187	28	-60	40	
BHE22 BHE23	10,180	97,929	188	50	-49.5	40	
BHE23 BHE24	10,099	97,929	187	50	-49.5	46	
BHE24 BHE25	10,091	97,950	187	50	-49.5	46	
BHE25 BHE26	10,196	98,074	187	50	-60	46	
BHE20 BHE27	10,028	98,074	185	45	-60	46	
BHE27 BHE28	-	98,030	184	50	-60	46	
BHE28 BHE29	10,031		185	39		46	
BHE29 BHE3	10,036	98,006 97,940	185	70	-60 -60	46	
	10,081						
BHE30	10,220	97,769	185	50	-60	46	
BHE31	10,046	98,017	183	45	-60	46	
BHE32	10,239	97,757	185	50	-60	46	
BHE33	10,271	97,703	187	60	-60	46	
BHE34	9,984	98,110	180	70	-60	46	
BHE35	10,024	97,968	179	100	-49.5	46	
BHE36	10,141	97,800	181	115	-60	46	
BHE37	10,074	97,900	182	73	-49.5	46	

	Collar			1	Orientation		
Hole	Easting (Local)	Northing (Local)	RL	Total Depth	Dip	Azimuth (Local)	
BHE38	10,048	97,925	181	110	-49.5	46	
BHE39	10,074	97,930	187	105	-64.5	46	
BHE4	10,037	97,980	182	70	-60	46	
BHE5	10,091	97,921	188	75	-60	46	
BHE6	10,145	97,832	188	80	-60	46	
BHE7	10,099	97,899	188	75	-60	46	
BHE8	10,131	97,848	188	90	-60	46	
BHE9	10,108	97,883	188	48	-60	46	
BHS11	10,270	97,840	185	30	-60	90	
BRC0057E	10,059	97,999	191	54	-80	90	
BRC0058E	10,061	98,001	191	60	-60	90	
BRC0087	10,087	97,999	199	50	-90	-	
BRC0250	10,087	98,032	189	60	-90	-	
BRC0425E	10,022	98,040	189	50	-90 -60	90	
		-					
BRC0457	10,061	98,039	192	40	-90	-	
BRC0460E	10,064	98,039	193	42	-70	90	
BRC0471W	10,068	98,041	193	80	-62	270	
BRC0475E	10,074	98,039	193	39	-70	90	
BRC0606E	10,004	98,055	177	51	-60	65	
BRC0805E	10,005	98,080	177	54	-60	90	
BRC0840	10,041	98,079	193	49	-90	-	
BRC0847	10,048	98,079	193	50	-90	-	
BRC0855W	10,055	98,079	193	75	-60	246	
BRC0865E	10,066	98,079	192	40	-70	90	
BRC1035W	10,035	98,100	191	40	-75	270	
BRC1045W	10,045	98,101	191	50	-75	270	
BRC1055E	10,054	98,100	191	40	-70	90	
BRC1095E	9,994	98,104	177	48	-60	90	
BRC1182E	9,983	98,105	176	58	-60	65	
BRC1410	10,011	98,136	190	40	-90	-	
BRC1415	10,015	98,136	191	43	-90	-	
BRC1421W	10,022	98,135	191	62	-60	270	
BRC1805W	10,009	98,181	192	40	-70	270	
BRC2083	9,984	98,194	132	45	-90	270	
BRC2085	9,988	98,200	189	30	-90		
						-	
BRC2450	9,951	98,240	186	60	-90		
BRC2645	9,946	98,258	186	60	-90	-	
BRC2840	9,939	98,276	186	64	-90	-	
BRC6820N	10,320	97,676	194	50	-60	48	
BRC6860W	10,359	97,684	194	40	-60	270	
BRC7204W	10,302	97,718	207	33	-60	270	
BRC7205	10,304	97,718	207	21	-90	-	
BRC7415W	10,313	97,742	199	30	-80	270	
BRC7485	10,284	97,745	206	40	-90	-	
BRC7675W	10,273	97,759	206	45	-80	268	
BRC7695W	10,293	97,760	201	30	-80	270	
BRC7945	10,247	97,786	206	57	-90	-	
BRC7947W	10,249	97,788	205	40	-70	270	
BRC7955	10,255	97,786	205	45	-90	-	
BRC7962E	10,260	97,787	205	23	-70	90	
BRC9609W	10,108	97,959	199	38	-60	270	
BRC9615E	10,115	97,959	199	40	-60	90	
BRC9620W	10,118	97,961	199	69	-60	270	
BRC9866E	10,066	97,978	190	68	-70	65	
BRC9890	10,090	97,979	199	70	-90	-	
BRC9897E	10,098	97,979	199	39	-60	90	
MYD15	9,982	98,044	176	162	-90	-	
IVI DIJ	5,502	30,044	1/0	102	-30	-	

		Collar			Orie	ntation
Hole	Easting (Local)	Northing (Local)	RL	Total Depth	Dip	Azimuth (Local)
MYD17	10,023	97,958	180	144	-60	66
MYD18A	10,092	97,840	180	163	-63	78
MYD19	10,043	97,913	179	138	-60	65
MYD20	10,010	98,006	178	120	-60	65
MYD21	10,063	97,876	178	304	-90	-
MYD22	10,022	97,957	180	210	-90	-
MYD23	9,969	98,098	176	118	-60	65
MYD25	9,959	97,932	176	417	-85	114
MYD7	10,180	97,724	180	159	-60	65
MYD8	9,987	98,050	177	140	-60	66
MYD9	10,064	97,875	178	143	-54	64
MYRC1	10,072	97,962	190	74	-50	60
MYRC2	10,246	97,725	192	76	-50	48
MYRC26	10,347	97,670	195	51	-70	60
MYRC27	10,346	97,669	195	70	-90	-
MYRC28	10,347	97,661	195	63	-75	83
MYRC29	10,306	97,714	207	71	-90	-
MYRC3	10,279	97,695	192	56	-46	48
MYRC30	10,313	97,716	207	66	-83	63
MYRC31	10,105	97,969	200	45	-90	-
MYRC32	10,036	98,106	191	52	-90	-
MYRC4A	10,344	97,616	186	47	-54	38
MYRC5	10,385	97,669	193	29	-48	220
MYRC7	10,292	97,767	201	21	-68	221
PDZ-2	10,341	97,652	194	24	-60	46

Collar						Orientation		
Hole	Easting (Local)	Northing (Local)	RL	Total Depth	Dip	Azimutł		
B3805	9,909	98,377	174	7	-	(Local) -90		
B3805A	9,908	98,372	175	18	-	-90		
B3810	9,913	98,375	175	22	-	-90		
B3815	9,917	98,376	176	14	-	-90		
BRC2450	9,951	98,240	186	60	-	-90		
BRC2645	9,946	98,258	186	60	-	-90		
BRC2840	9,939	98,276	186	64	-	-90		
BRC3015E	9,916	98,300	178	62	90	-60		
BRC3495E	9,903	98,339	175	50	90	-60		
BRC3497E	9,907	98,337	176	58	90	-60		
BRC3800E	9,909	98,366	175	37	90	-60		
M0017E	9,917	99,000	217	14	90	-42		
M0030	9,930	98,998	227	20	-	-90		
M0035	9,936	99,000	229	11	-	-90		
M0040	9,940	98,999	229	5	-	-90		
M0045	9,943	99,000	229	11	-	-90		
M0050	9,949	99,000	228	21	-	-90		
M0055	9,955	99,001	226	17	-	-90		
M0235	9,936	99,029	227	12	-	-90		
M0240	9,939	99,020	229	10	-	-90		
M0245	9,944	99,021	229	7	-	-90		
M0250	9,950	99,022	228	17	-	-90		
M0255	9,954	99,021	226	6	-	-90		
M0260	9,960	99,021	223	14	-	-90		
M0445	9,944	99,040	227	9	-	-90		
M0450	9,949	99,042	227	9	-	-90		
M0455	9,954	99,041	225	10	-	-90		
M0460 M33D	9,959 9,913	99,040 98,710	225 209	10 13	-	-90 -90		
M33U M33W	9,913	98,709	209	13	-	-90		
M33W M4405E	9,912	98,440	186	17	90	-90		
M4403E M4605E	9,903	98,459	180	20	90	-55		
M4003E M4887E	9,888	98,479	187	8	90	-45		
M4895E	9,896	98,476	107	15	90	-49		
M4075E M5085E	9,886	98,507	189	19	90	-48		
M5095E	9,895	98,506	192	23	90	-50		
M5200	9,899	98,520	192	21	-	-90		
M5205	9,904	98,521	194	18	-	-90		
M5210	9,909	98,521	196	25	-	-90		
M5215	9,915	98,521	197	11	-	-90		
M5220	9,917	98,522	199	9	-	-90		
M5285	9,885	98,518	189	5	-	-90		
M5285A	9,886	98,518	190	16	-	-90		
M5290	9,889	98,519	191	20	-	-90		
M5295	9,895	98,519	192	21	-	-90		
M5485E	9,884	98,549	189	22	90	-52		
M5685E	9,884	98,560	191	24	90	-47		
M5885E	9,882	98,580	189	20	90	-50		
M6085E	9,884	98,599	191	9	90	-50		
M6200	9,898	98,620	196	9	-	-90		
M6205	9,905	98,619	199	9	-	-90		
M6210	9,910	98,620	200	20	-	-90		
M6215	9,914	98,620	201	13	-	-90		
M6280E	9,879	98,620	192	20	90	-51		
M6290	9,889	98,621	194	9	-	-90		
M6295	9,894	98,620	195	5	-	-90		

Appendix B – Drill holes used in the Main Hill model.

		Collar				Orientation		
Hole	Easting (Local)	Northing (Local)	RL	Total Depth	Dip	Azimut (Local)		
M6400	9,900	98,641	198	12	-	-90		
M6405	9,904	98,641	198	17	-	-90		
M6410	9,909	98,640	199	10	-	-90		
M6415	9,914	98,640	199	16	-	-90		
M6420	9,919	98,641	200	9	-	-90		
M6425	9,925	98,640	200	24	-	-90		
M6430	9,930	98,640	200	10	-	-90		
M6435	9,934	98,641	200	17	-	-90		
M6440	9,939	98,641	199	20	-	-90		
M6445	9,944	98,641	198	25	-	-90		
M6465	9,863	98,640	186	12	-	-90		
M6470	9,868	98,640	190	20	-	-90		
M6473E	9,874	98,640	191	20	90	-42		
M6475	9,874	98,640	191	19	-	-90		
M6480	9,879	98,641	192	7	-	-90		
M6485	9,883	98,640	192	21		-90		
M6490	9,887	98,639	195	13	-	-90		
M6490	9,893	98,640	195	9	-	-90		
M6495 M6600	9,893	98,640	201	9	-	-90		
M6600 M6605	9,899	98,658	201	11		-90		
M6605 M6610	9,904	98,658	201	12	-	-90		
			203	24	-			
M6615	9,914	98,660			-	-90		
M6620	9,918	98,659	203	25	-	-90		
M6625	9,923	98,661	203	24	-	-90		
M6630	9,927	98,660	202	20	-	-90		
M6635	9,934	98,660	202	16	-	-90		
M6640	9,938	98,660	201	25	-	-90		
M6685	9,883	98,660	195	4	-	-90		
M6690	9,887	98,661	196	12	-	-90		
M6695	9,894	98,658	199	10	-	-90		
M6800	9,897	98,681	204	24	-	-90		
M6805	9,904	98,682	208	10	-	-90		
M6810	9,908	98,679	206	14	-	-90		
M6815	9,913	98,680	210	15	-	-90		
M6820	9,917	98,680	211	17	-	-90		
M6825	9,923	98,680	211	4	-	-90		
M6826	9,922	98,682	211	17	-	-90		
M6830	9,928	98,678	207	16	-	-90		
M6835	9,933	98,678	204	15	-	-90		
M6885	9,884	98,681	199	12	-	-90		
M6890	9,889	98,681	201	20	-	-90		
M6895	9,893	98,680	202	6	-	-90		
M6910	9,908	98,688	207	6	-	-90		
M7000	9,898	98,701	207	4	-	-90		
M7005	9,904	98,700	208	15	-	-90		
M7010	9,909	98,702	209	16	-	-90		
M7015	9,915	98,700	209	25	-	-90		
M7020	9,920	98,700	208	12	-	-90		
M7025	9,926	98,702	208	11	-	-90		
M7030	9,930	98,701	209	22	-	-90		
M7035	9,936	98,701	207	13	-	-90		
M7033	9,940	98,701	207	19	-	-90		
M7045	9,945	98,701	203	19	-	-90		
M7043	9,879	98,701	203	21		-90		
M7080 M7085	9,879	98,701	202	11	-	-90		
M7085 M7090	9,884	98,701	205	11 18		-90		
M7090 M7095	9,888	98,701	207	26	-	-90		
141/070	7,074	90,/01	200	20	-	-90		

	Collar				Orientation		
Hole	Easting (Local)	Northing (Local)	RL	Total Depth	Dip	Azimut (Local)	
M7200	9,900	98,720	209	16		-90	
M7205	9,904	98,721	210	10	-	-90	
M7210	9,908	98,717	211	20	-	-90	
M7215	9,913	98,718	211	13	-	-90	
M7220	9,919	98,720	213	15	-	-90	
M7225	9,924	98,720	213	11	-	-90	
M7230	9,930	98,720	211	24	-	-90	
M7235	9,935	98,721	208	21	-	-90	
M7280	9,878	98,721	205	26	-	-90	
M7285	9,884	98,722	208	24	-	-90	
M7290	9,888	98,722	209	7	-	-90	
M7295	9,895	98,726	209	23	-	-90	
M7410	9,909	98,740	219	20	-	-90	
M7415	9,917	98,738	218	7	-	-90	
M7420	9,920	98,740	215	18		-90	
M7420	9,868	98.739	213	23	-	-90	
M7475	9,875	98,738	201	23	-	-90	
M7485	9,886	98,737	203	25		-90	
M7483	9,890	98,737	208	23	-	-90	
M7490 M7495	9,890	98,740	209	25		-90	
M7495 M7500	9,904	98,753	213	25	-	-90	
					-		
M7600	9,899	98,759	217	18	-	-90	
M7605	9,904	98,758	219	11	-	-90	
M7610	9,908	98,758	219	6	-	-90	
M7615	9,915	98,755	218	10	-	-90	
M7670	9,870	98,760	204	16	-	-90	
M7675	9,874	98,756	206	26	-	-90	
M7680	9,882	98,755	209	23	-	-90	
M7690	9,888	98,757	213	17	-	-90	
M7695	9,894	98,758	216	15	-	-90	
M7800	9,901	98,780	219	8	-	-90	
M7805	9,907	98,781	221	13	-	-90	
M7810	9,911	98,779	221	6	-	-90	
M7815	9,914	98,779	221	19	-	-90	
M7870	9,873	98,780	206	14	-	-90	
M7875	9,877	98,781	209	12	-	-90	
M7880	9,883	98,780	209	23	-	-90	
M7885	9,888	98,780	209	7	-	-90	
M7890	9,894	98,780	209	20	-	-90	
M7895	9,898	98,780	216	10	-	-90	
M8005	9,905	98,801	222	18	-	-90	
M8010	9,910	98,800	222	7	-	-90	
M8015	9,914	98,795	223	18	-	-90	
M8075	9,876	98,800	207	8	-	-90	
M8080	9,880	98,799	209	17	-	-90	
M8085	9,886	98,797	210	26	-	-90	
M8090	9,891	98,799	212	19	-	-90	
M8095	9,895	98,800	213	16	-	-90	
M8200	9,902	98,820	218	10	-	-90	
M8205	9,902	98,818	210	4	-	-90	
M8210	9,912	98,819	223	15	-	-90	
M8275	9,912	98,822	223	15	-	-90	
M8275 M8280	9,876	98,822	208	21		-90	
	,				-		
M8285	9,887	98,821	210	19	-	-90	
M8290	9,892	98,819	212	17	-	-90	
M8295 M8400	9,898	98,818	215	7	-	-90	
N/1 V / 11/1	9,901	98,838	216	9	-	-90	

		Collar	1		Orie	ntation
Hole	Easting (Local)	Northing (Local)	RL	Total Depth	Dip	Azimut (Local)
M8425	9,925	98,840	227	10	-	-90
M8480	9,883	98,843	208	19	-	-90
M8485	9,888	98,839	210	22	-	-90
M8490	9,892	98,841	212	15	-	-90
M8495	9,898	98,838	214	20	-	-90
M8600	9,904	98,858	218	20	-	-90
M8605	9,908	98,858	221	10	-	-90
M8615	9,919	98,861	225	8	-	-90
M8620	9,924	98,861	225	11	-	-90
M8625	9,932	98,857	223	14	-	-90
M8685	9,887	98,858	209	20	-	-90
M8690	9,893	98,859	213	17	-	-90
M8695	9,899	98,859	215	9	-	-90
M8810	9,910	98,879	210	7		-90
M8810E	9,912	98,881	222	11	90	-45
M8820	9,912	98,883	231	11		-43
	,	,			-	
M8830	9,930	98,880	228	10	-	-90
M8835	9,936	98,881	227	8	-	-90
M8840	9,940	98,880	227	11	-	-90
M8845	9,946	98,881	230	16	-	-90
M8850	9,950	98,879	231	12	-	-90
M8855	9,955	98,881	229	20	-	-90
M9016E	9,916	98,900	219	17	90	-41
M9030	9,927	98,904	231	9	-	-90
M9035	9,933	98,903	229	13	-	-90
M9040	9,937	98,903	229	19	-	-90
M9045	9,943	98,902	229	15	-	-90
M9050	9,950	98,902	230	15	-	-90
M9055	9,954	98,898	233	16	-	-90
M9214E	9,913	98,919	218	19	90	-36
M9230	9,930	98,925	229	4	-	-90
M9235	9,932	98,923	229	18	-	-90
M9240	9,939	98,922	227	16	-	-90
M9245	9,946	98,922	227	11	-	-90
M9250	9,951	98,922	228	13	-	-90
M9255	9,957	98,922	228	12	-	-90
M9260	9,961	98,922	230	12	-	-90
M9285	9,886	98,919	204	13	-	-90
M9413E	9,912	98,938	216	19	90	-43
M9430	9,925	98,939	228	7	-	-90
M9435	9,933	98,940	227	13	-	-90
M9440	9,939	98,940	227	5	-	-90
M9445	9,944	98,940	226	7	-	-90
M9450	9,949	98,940	226	13	-	-90
M9455	9,954	98,938	226	13	-	-90
M9460	9,962	98,941	226	12	-	-90
M9465	9,962	98,941	226	12	-	-90
M9465 M9480E	9,884	98,937	220	21	- 90	-90
M9480E M9610			201 215	19		
	9,910	98,960			-	-90
M9625	9,928	98,958	230	25	-	-90
M9630	9,930	98,959	229	18	-	-90
M9635	9,937	98,959	228	10	-	-90
M9640	9,941	98,958	228	7	-	-90
M9645	9,944	98,960	226	10	-	-90
M9650	9,950	98,958	224	10	-	-90
M9655	9,955	98,957	223	16	-	-90
M9810	9,910	98,980	216	17	-	-90
M9816E	9,914	98,977	216	16	90	-42

	Collar			1	Orientation		
Hole	Easting (Local)	Northing (Local)	RL	Total Depth	Dip	Azimuth (Local)	
M9835	9,934	98,979	231	7	-	-90	
M9840	9,939	98,980	229	15	-	-90	
M9845	9,942	98,982	229	5	-	-90	
M9850	9,949	98,983	229	4	-	-90	
MHE1	9,998	98,941	200	70	270	-60	
MHE10	10,005	99,061	199	70	270	-60	
MHE11	9,866	98,517	179	50	90	-60	
MHE12	9,865	98,538	179	49	90	-60	
MHE13	9,824	98,701	175	75	90	-60	
MHE14	9,824	98,641	174	70	90	-60	
MHE16	9,830	98,599	174	64	90	-60	
MHE17	9,840	98,562	174	60	90	-60	
MHE18	9,870	98,431	175	70	90	-60	
MHE19	9,881	98,410	176	70	90	-60	
MHE2	9,995	98,980	200	70	270	-60	
MHE20	10,000	98,962	200	70	270	-60	
MHE21	9,846	98,621	178	70	90	-70	
MHE23	9,854	98.483	173	58	90	-60	
MHE24	9,850	98,602	179	57	90	-75	
MHE25	9,889	98,362	175	70	90	-60	
MHE26	9,908	98,362	176	60	90	-60	
MHE20 MHE27	9,910	98,382	175	40	90	-60	
MHE28	9,888	98,380	175	70	90	-60	
MHE20 MHE29	9,850	98,502	173	65	90	-60	
MHE3	10,001	99,001	200	70	270	-60	
MHE33	10,001	99,042	200	50	90	-60	
MHE33 MHE34	9,993	99,042	204	70	270	-60	
MHE34 MHE35	9,993	99,042	204	60	68	-60	
MHE35 MHE36	9,993	99,000	202	70	238	-60	
MHE30 MHE37	9,995	,	178	55			
MHE37 MHE38	9,918	98,341 98,300	178	50	90 90	-60 -60	
MHE30 MHE39	9,925	98,342	176	42	90 90	-60	
MHE39 MHE4	10,005	99,040	200	68	90 270		
MHE4 MHE40	9,923	,		50	-	-60	
		98,320	180		90	-60	
MHE41	10,000	98,972	200	45	91	-60	
MHE42	10,011	99,023	200	45	91	-60	
MHE43	10,005	99,101	196	45	91	-60	
MHE44	9,998	99,101	199	70	271	-60	
MHE5	10,001	99,083	198	70	270	-60	
MHE6	9,978	99,141	195	70	270	-60	
MHE7	9,976	99,165	193	60	270	-60	
MHRC1	10,056	99,021	188	50	90	-60	
MHRC10	10,038	99,042	193	50	90	-60	
MHRC11	10,031	99,042	193	30	90	-60	
MHRC14	10,001	98,962	199	50	90	-60	
MHRC15	10,000	98,962	199	50	-	-90	
MHRC16	9,995	98,982	200	50	-	-90	
MHRC17	10,003	98,982	199	50	90	-60	
MHRC18	10,009	99,002	199	40	90	-60	
MHRC19	9,995	99,002	201	70	-	-90	
MHRC21	10,004	99,103	196	60	90	-60	
MHRC23	10,032	99,062	192	48	90	-60	
MHRC24	10,025	99,084	192	40	90	-60	
MHRC26	10,014	99,062	198	50	90	-60	
MHRC7	10,026	98,962	190	50	90	-60	
MHRC8	10,026	98,982	191	50	90	-60	
MHRC9	10,036	99,022	193	50	90	-60	
MHS19	10,000	98,920	185	70	270	-60	

	Collar			1	Orientation		
Hole	Easting (Local)	Northing (Local)	RL	Total Depth	Dip	Azimuth (Local)	
MRC0038W	9,938	99,002	229	50	271	-60	
MRC0045E	9,946	99,001	229	80	91	-60	
MRC0090W	9,991	98,995	202	72	314	-60	
MRC0205	10,005	99,017	200	50	-	-90	
MRC0240	9,942	99,022	229	44	-	-90	
MRC0243E	9,945	99,022	229	48	91	-80	
MRC0245E	9,947	99,023	229	99	91	-60	
MRC0292	9,995	99,018	204	60	-	-90	
MRC0410	10,008	99,037	200	33	-	-90	
MRC0451E	9,951	99,043	227	99	91	-60	
MRC0494	9,995	99,037	204	68	-	-90	
MRC0610	10,009	99,056	198	40	-	-90	
MRC0645W	9,946	99,063	225	60	271	-60	
MRC0656E	9,954	99,060	225	91	124	-60	
MRC0691W	9,992	99.063	204	54	309	-60	
MRC0693	9,994	99,057	204	59	-	-90	
MRC0807E	10,003	99,083	198	45	129	-60	
MRC4091E	9,891	98,400	170	51	91	-60	
MRC4091E MRC4093E	9,894	98,407	177	48	91	-60	
MRC4105E	9,908	98,413	179	40	91	-60	
MRC4103E MRC4382E	9,883	98,430	175	56	91	-60	
MRC4302E MRC4400	9,902	98,440	170	50	-	-00	
			176	63			
MRC4468E MRC4510	9,875 9,914	98,428 98,454	176	27	91	-80 -90	
		,			-		
MRC4578E	9,875	98,445	175	38	91	-60	
MRC4605E	9,907	98,462	190	50	118	-60	
MRC4660E	9,873	98,460	174	44	91	-60	
MRC4680	9,885	98,467	186	56	-	-90	
MRC4864E	9,869	98,483	177	50	91	-60	
MRC4883	9,883	98,480	186	60	-	-90	
MRC4893	9,890	98,482	190	45	-	-90	
MRC4895E	9,898	98,476	190	50	119	-60	
MRC5060E	9,867	98,500	178	52	91	-60	
MRC5083	9,882	98,497	186	60	-	-90	
MRC5090	9,891	98,499	190	42	-	-90	
MRC5095	9,898	98,501	193	50	-	-90	
MRC5258E	9,858	98,520	178	48	91	-70	
MRC5280	9,881	98,518	189	6	-	-90	
MRC5283	9,883	98,517	189	48	-	-90	
MRC5292	9,891	98,519	192	58	-	-90	
MRC5390	9,891	98,533	193	44	-	-90	
MRC5458E	9,858	98,540	179	48	91	-70	
MRC5483N	9,884	98,540	189	60	18	-60	
MRC5485	9,884	98,540	188	54	-	-90	
MRC5660E	9,860	98,560	180	51	91	-70	
MRC5680	9,880	98,558	188	54	-	-90	
MRC5685	9,886	98,561	191	60	-	-90	
MRC5780N	9,880	98,572	189	45	18	-60	
MRC5843E	9,843	98,582	175	66	91	-60	
MRC5880	9,878	98,579	189	62	-	-90	
MRC5883	9,881	98,580	189	60	-	-90	
MRC6040E	9,841	98,599	174	57	91	-60	
MRC6073N	9,875	98,602	188	60	14	-60	
MRC6075	9,873	98,600	188	52	-	-90	
MRC6080	9,880	98,597	190	50	-	-90	
MRC6167W	9,869	98,611	190	46	323	-60	
MRC6250E	9,850	98,620	178	55	91	-60	
MRC6263W	9,864	98,623	186	50	319	-60	

	Collar			1	Orientation		
Hole	Easting (Local)	Northing (Local)	RL	Total Depth	Dip	Azimuth (Local)	
MRC6268	9,867	98,620	187	68	-	-90	
MRC6437E	9,837	98,640	177	48	91	-60	
MRC6464	9,862	98,640	187	57	-	-90	
MRC6642E	9,842	98,660	181	52	91	-60	
MRC6662	9,863	98,661	192	51	-	-90	
MRC6676	9,877	98,662	195	14	-	-90	
MRC6831E	9,830	98,681	176	69	91	-60	
MRC6862	9,863	98,682	191	60	-	-90	
MRC6870	9,870	98,682	191	50	-	-90	
MRC6875E	9,872	98,681	192	44	91	-60	
MRC7000	9,905	98,699	208	35	-	-90	
MRC7005E	9,905	98,699	208	50	91	-80	
MRC7020E	9,920	98,699	208	52	91	-80	
MRC7020E	9,867	98,701	192	40	91	-70	
MRC7094W	9,895	98,700	208	72	270	-70	
MRC7094W MRC7200E	9,900	98,719	200	50	91	-70	
MRC7200E MRC7215	9,900	98,719	209	33	-	-70	
MRC7215 MRC7265E	9,913	98,720	191	30	- 91	-90	
MRC7203E MRC7290	9,890	98,719	209	50	-	-70	
	,	,					
MRC7295E	9,895	98,719	208	40	91	-80	
MRC7295W	9,893	98,718	209	60	271	-70	
MRC7405	9,906	98,740	219	40	-	-90	
MRC7424W	9,926	98,741	212	48	271	-60	
MRC7426W	9,927	98,741	212	50	271	-80	
MRC7483	9,883	98,738	209	50	-	-90	
MRC7489	9,889	98,738	209	50	-	-90	
MRC7490E	9,891	98,739	209	60	91	-60	
MRC7493N	9,892	98,742	209	58	48	-60	
MRC7605	9,906	98,760	219	45	-	-90	
MRC7612E	9,913	98,759	219	40	91	-70	
MRC7678	9,877	98,759	209	56	-	-90	
MRC7850E	9,853	98,780	190	74	91	-60	
MRC7882	9,883	98,780	209	60	-	-90	
MRC7886W	9,884	98,779	209	56	271	-75	
MRC7890	9,888	98,779	209	26	-	-90	
MRC7895E	9,893	98,779	209	39	91	-60	
MRC8050E	9,851	98,802	189	70	91	-60	
MRC8082	9,880	98,801	209	60	-	-90	
MRC8280	9,881	98,822	208	50	-	-90	
MRC8684	9,882	98,860	208	62	-	-90	
MRC8830W	9,931	98,880	228	63	271	-80	
MRC8835E	9,936	98,880	227	60	91	-80	
MRC9002W	9,898	98,901	215	56	271	-60	
MRC9032W	9,933	98,902	229	17	271	-70	
MRC9034W	9,936	98,902	229	69	271	-70	
MRC9035	9,933	98,899	229	46	-	-90	
MRC9035W	9,936	98,899	229	32	271	-60	
MRC9040	9,941	98,899	229	60		-90	
MRC9040E	9,942	98,899	229	60	91	-70	
MRC9208	9,907	98,921	217	44	-	-90	
MRC9235W	9,935	98,926	227	60	271	-70	
MRC9233W	9,935	98,930	226	46		-70	
MRC9230	9,939	98,926	220	62	-	-90	
MRC9238	9,939	98,926	226	63	- 91	-90	
MRC9243E MRC9245	9,945	98,928	226	51	- 91	-70	
MRC9245 MRC9408	9,944 9,907	98,928		61		-90	
MRC9408 MRC9435W	9,907 9,934	98,947	216 227	61	- 271	-90 -70	
MING 7433 W	7,734	70,740	221	00	271	-70	

Collar					Orientation	
Hole	Easting (Local)	Northing (Local)	RL	Total Depth	Dip	Azimuth (Local)
MRC9442	9,943	98,939	226	60	-	-90
MRC9444E	9,946	98,939	226	60	91	-80
MRC9450E	9,952	98,939	226	60	91	-80
MRC9630W	9,932	98,959	229	50	271	-60
MRC9635	9,935	98,958	228	60	-	-90
MRC9646	9,949	98,960	223	40	-	-90
MRC9790W	9,991	98,972	200	43	271	-60
MRC9839W	9,938	98,984	230	70	271	-60
MRC9850E	9,947	98,984	229	70	91	-60
MRC9888W	9,989	98,985	202	57	226	-60
MRC9988W	9,991	98,991	202	45	271	-60
MYD10	9,819	98,393	175	192	90	-60
MYD11	9,799	98,705	173	231	91	-60
MYD12	9,814	98,950	172	225	90	-60
MYD13	9,854	99,096	178	249	90	-60
MYD14	9,911	98,708	209	19	-	-90
MYD24A	9,830	98,627	174	212	105	-66
MYD4	9,799	98,556	174	280	78	-89
MYD5	9,799	98,465	175	250	70	-75
MYD6	9,800	98,825	174	210	88	-65
MYRC13	9,884	98,665	196	11	78	-59
MYRC13A	9,883	98,665	196	27	78	-67
MYRC14	9,894	98,616	195	19	118	-66
MYRC33	9,914	98,710	210	56	-	-90
MYRC34	9,909	98,702	209	55	122	-70
MYRC35	9,915	98,713	211	69	252	-60
PDZ-7	9,934	98,635	200	29	91	-60
PDZ-8	9,885	98,636	193	30	91	-60
R4-9	9,789	98,806	174	188	98	-60
WBMHSW	9,883	98,412	176	61	-	-90