

12 July 2017

EXCEPTIONALLY HIGH-GRADE, SHALLOW COBALT MINERALISATION INTERSECTED AT ROE HILLS

Maiden Aircore drilling confirms extensive, shallow high-grade cobalt-nickel-manganese oxide mineralisation up to 1.36% Cobalt at the ROE-1 Prospect, Roe Hills Project, WA

<u>Highlights:</u>

- Significant zone of near-surface cobalt-nickel-manganese mineralisation intersected over a continuous strike of at least 700m in length and up to 150m in width at the ROE-1 prospect in the recently completed 59-hole, 1,851m cobalt-focused Aircore drilling program.
- Significant assay results include:

•	RHAC002A:	8m @ 0.11% Co; 0.43% Ni and 0.40% Mn from 2m
•	RHAC003:	 3m @ 0.27% Co; 0.48% Ni and 1.93% Mn from 2m <i>including</i>: 1m @ 0.70% Co; 0.67% Ni and 4.95% Mn from 2m depth.
•	RHAC023:	10m @ 0.10% Co, 0.64% Ni and 0.59% Mn from 4m
•	RHAC024:	6m @ 0.12% Co, 0.67% Ni and 0.34% Mn from 6m, including: • 2m @ 0.24% Co, 0.76% Ni and 0.63% Mn from 6m depth
•	RHAC028:	 4m @ 0.39% Co, 0.57% Ni and 1.0% Mn from 11m, including: 1m @ 1.36% Co, 1.29% Ni and 3.37% Mn from 11m depth
•		12m @ 0.2004 Co. 0.6E04 Ni and 0.7204 Mn from $11m$ including.

- RHAC029: 12m @ 0.20% Co, 0.65% Ni and 0.73% Mn from 11m, including:
 3m @ 0.40% Co, 1.0% Ni and 1.43% Mn from 12m depth.
- The cobalt & manganese grades reported are exceptionally high compared to most other nickel-cobalt oxide deposits in WA and globally.
- A follow-up program of ~2,000m of Aircore drilling is planned later this year to test extensions of the ROE-1 cobalt prospect along with several other high-priority cobalt prospects identified throughout the Roe Hills Project.
- ~2,800m gold-focused drilling program comprising 34 Aircore/RC holes designed to test a number of high-priority gold targets including Terra, Lady of the Lake and Ginger Kiss has also now been completed with assays awaited.

KAIROS

Kairos Minerals Ltd (ASX: KAI; "Kairos" or "the Company") is pleased to advise that it has intersected a significant zone of shallow cobalt-nickel-manganese oxide mineralisation at its 100%-owned **Roe Hills Project**, located 120km east-south-east of Kalgoorlie in Western Australia's Eastern Goldfields (see Figures 1-6), with recent Aircore drilling returning some exceptionally high grades up to 1.36% Cobalt.

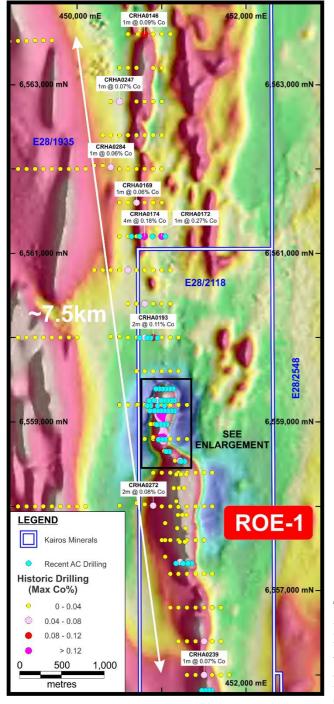
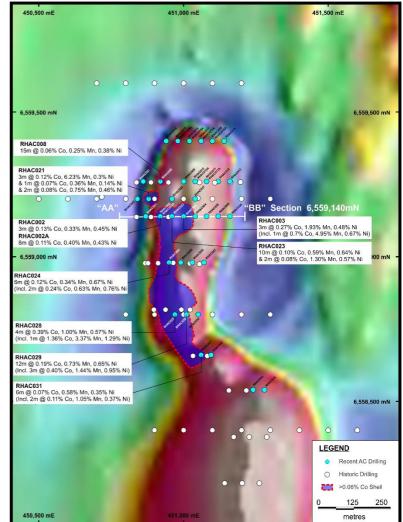
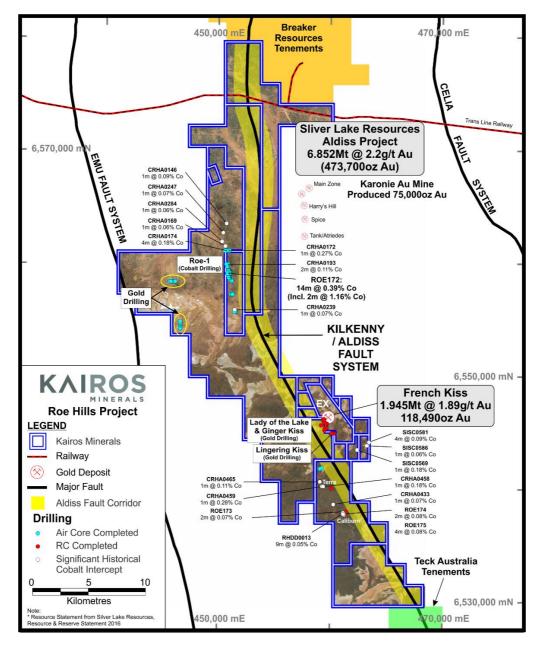
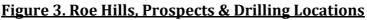



Figure 1. ROE-1, Cobalt Drilling

Figure 2. ROE-1, High Grade Cobalt Mineralised Zone

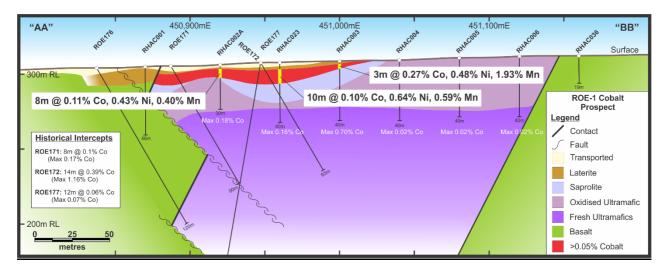

The results have significantly upgraded the cobalt potential of the Roe Hills Project and will be followed up in the near future with further Aircore drilling, both at the recently drilled ROE-1 prospect and other high-priority cobalt prospects located within the Company's tenure.



The initial phase of Aircore drilling comprising 59 holes for 1,852m was designed to evaluate historical indications of near-surface high-grade cobalt mineralisation associated with a thickened sequence of high MgO serpentinised ultramafic rocks at the ROE-1 Prospect (see Figures 1-4). All assays have now been received for this initial phase of cobalt-focused drilling.

Potentially significant shallow cobalt mineralisation was identified earlier this year by Kairos at the ROE-1 Prospect and at numerous other locations throughout the broader project area following a review of historical drilling data (refer Figure 3, KAI ASX Announcement 14 March 2017).

• Significant historical intercepts of cobalt mineralisation at ROE-1 included a best result of: ROE172: 14m @ 0.39% Co from 20m (*including 2m @ 1.16% Co from 22m*)



The program was highly successful with numerous holes returning significant widths of exceptionally high-grade cobalt-nickel-manganese (Co-Ni-Mn) oxide mineralisation from near-surface/shallow depths.

The drilling has outlined a continuous zone of high-grade cobalt-nickel-manganese mineralisation averaging 8m in thickness and 0.15% cobalt (applying a 0.05% cut-off) over a minimum strike length of 700m, a width of up to 150m and extending from just 2m below surface to a maximum drill intersection depth of 43m.

Unlike nickel-cobalt laterite deposits which display a complex geomorphology, the high grade zone at ROE-1 is tabular/sub-horizontal (Refer Figure 4) and sits within saprolite close to the interface with fresh rock (serpentinised olivine adcumulate ultramafic) rather than being "perched" within a broader unconsolidated weathered profile.

Figure 4. Schematic Cross Section 6,559,140mN

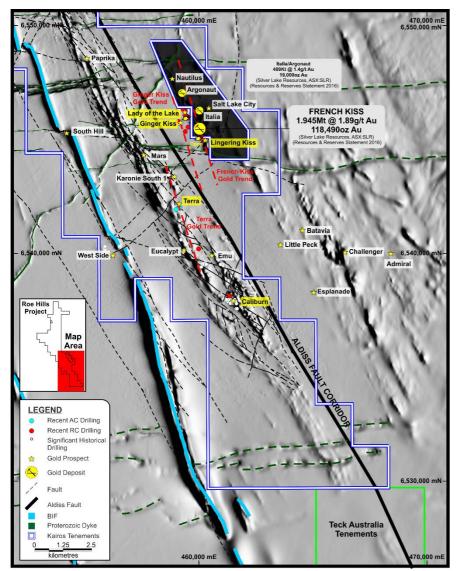
As the vast majority of the holes drilled were vertical, the intersection lengths as reported are equivalent to true widths.

A single traverse of holes drilled almost ~3km's south of ROE-1 confirmed a wide sequence of high MgO ultramafic however the oxide profile at this location appears to be stripped and as a consequence none of the holes completed returned anomalous cobalt results. Additional drilling is required to determine the full extent and location of further potential mineralisation at ROE-1.

Drill-hole locations are shown in Figures 1-3. A typical profile of the mineralised sequence is shown in Plate 1 and a summary of significant intersections is presented in Table 1.

Plate 1. ROE-1, High Grade Mineralisation Profile

	Collar Location & Orientation										Intersection Summary					
Prospect	Hole	Туре	MGA_E	MGA_N	RL	Dip	Az	Total Depth (m)		From (m)	To (m)	Length (m)	Co (%)	Ni (%)	Mn (%)	
	RHAC002	Aircore	450920	6559140	308	-90	0	7		3	6	3	0.13	0.45	0.33	
	RHAC002A	Aircore	450920	6559140	308	-90	0	30		2	10	8	0.11	0.43	0.40	
	RHAC003	Aircore	451000	6559140	310	-90	0	40		2	5	3	0.27	0.48	1.93	
									incl	2	3	1	0.70	0.67	4.95	
	RHAC008	Aircore	450920	6559260	310	-90	0	40		13	28	15	0.06	0.38	0.25	
	RHAC021	Aircore	450880	6559200	308	-90	0	85		23	26	3	0.12	0.30	6.13	
									and	33	34	1	0.07	0.14	0.36	
									and	41	43	2	0.08	0.46	0.75	
ROE-1	RHAC023	Aircore	450960	6559140	309	-90	0	40		4	14	10	0.10	0.64	0.59	
NOT-1									and	26	28	2	0.08	0.57	1.30	
	RHAC024	Aircore	450950	6558980	306	-90	0	37		6	12	6	0.12	0.67	0.34	
									incl	6	8	2	0.24	0.76	0.63	
	RHAC028	Aircore	450970	6558800	303	-90	0	31		11	15	4	0.39	0.57	1.00	
									incl	11	12	1	1.36	1.29	3.37	
	RHAC029	Aircore	451010	6558800	303	-90	0	37		11	23	12	0.19	0.65	0.73	
									incl	12	15	3	0.40	0.95	1.44	
	RHAC031	Aircore	451060	6558660	302	-60	90	67		23	29	6	0.07	0.35	0.58	
									incl	23	25	2	0.11	0.37	1.05	


Table 1. Summary of significant intercepts (0.05% Co cut off).

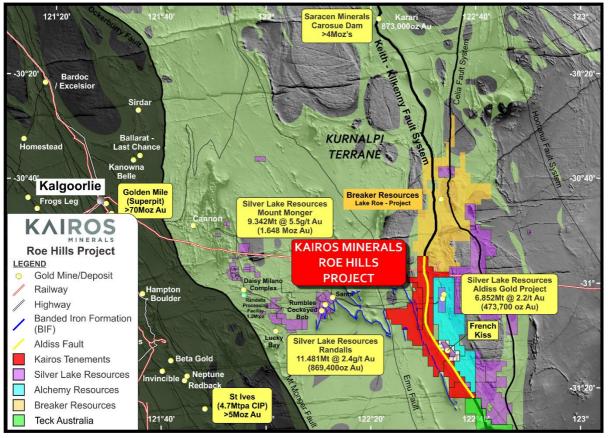
Details of all AC holes completed are presented in Table 2 & 3 below.

In light of the outstanding results received from the cobalt-focused drilling, Kairos intends to undertake a further follow-up program of ~2,000m of Aircore drilling to test for extensions to the mineralisation at ROE-1 and to provide a first-pass assessment of several other high-priority cobalt targets identified throughout the Roe Hills Project tenure.

GOLD DRILLING UDPATE

The second (gold-focused) phase of the most recent drilling campaign has also now been completed. An initial program of 17 holes for 762m of Aircore (AC) drilling was undertaken to evaluate recently identified structural gold targets at two prospects situated west of the ROE-1 area (refer Figure 3).

The programme then transitioned to a combination of AC and Reverse Circulation (RC) drilling to ensure adequate penetration at depth during further evaluation the Company's four priority gold prospects, namely Terra, Lady of the Lake, Ginger Kiss and Caliburn (formerly Talc Lake), located some 30km further south toward the southern end of the Project area (refer Figure 5).


Figure 5. Prospect Locations and Recent Gold Drilling

The drilling was designed to test for strike and depth extensions to the excellent gold results generated by the Company's maiden drilling programme completed earlier this year (refer Kairos ASX Announcement 6/4/2017).

An additional three holes were completed late in the program to provide a preliminary test of the recently identified *Lingering Kiss Prospect*, which is considered by Kairos' technical team to represent a potential extension/structural repetition of Silver Lake Resources' (ASX:SLR) French Kiss Gold Deposit (refer Figures 3 & 5).

The company is awaiting gold assays and will provide further updates in the coming weeks.

Figure 6. Roe Hills Project Location

MANAGEMENT COMMENT

Kairos' Chairman, Mr Terry Topping, said "the recently completed cobalt drilling program at Roe Hills had been an outstanding success, defining an extensive zone of shallow cobalt-nickel-manganese oxide mineralisation with a grade profile which made this a potentially important strategic asset for the Company."

"This exceptional grade, combined with the near-surface nature and extent of the mineralisation and the prime location of the Roe Hills Project in the Eastern Goldfields, make this an exciting emerging opportunity for the Company."

"Cobalt has been one of the strongest performing metals of 2017, with the price up almost 70 per cent since the start of the year, driven by surging demand from the lithium-ion battery sector, where it is critical raw material."

"The fact that 95 per cent of the world's mined cobalt comes as a by-product of nickel and copper – both of which are subject to challenging supply/demand dynamics which make investment in those commodities relatively unattractive in the current market. Cobalt supply is currently dominated by the DRC and China, this opens up an opportunity for potential new primary sources of supply in attractive jurisdictions."

"We intend to return with a follow-up drilling program to further define the mineralisation at ROE-1, test immediate extensions of the deposit and provide a first-pass test of other priority cobalt prospects in the region."

ENDS

For further information, please contact:

Inve	stor	S:	
Mr Jo	oshu	a We	ellisch
		D 1	

Managing Director Kairos Minerals Limited Media:

Nicholas Read/Paul Armstrong Read Corporate Ph: 08 9388 1474

COMPETENT PERSON STATEMENT:

Competent Person: The information in this report that relates to Exploration Results or Mineral Resources is based on information compiled and reviewed by Mr Steve Vallance, who is the Technical Manager for Kairos Minerals Ltd and who is a Member of The Australian Institute of Geoscientists. The information was also reviewed by Mr Terry Topping, who is a Non Exec Director of Kairos Minerals Ltd and who is also a Member of AusIMM. Both Mr Vallance and Mr Topping have sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity which they are undertaking to qualify as Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.' (the JORC Code 2012). Mr Vallance and Mr Topping have consented to the inclusion in the report of the matters based on their information in the form and context in which it appears.

The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

Hole	MGAE	MGAN	RL	Length	Dip	Azimuth
RHAC001	450870	6559140	307	46	-90	0
RHAC002	450920	6559140	308	7	-90	0
RHAC002A	450920	6559140	308	30	-90	0
RHAC003	451000	6559140	310	40	-90	0
RHAC004	451040	6559140	310	40	-90	0
RHAC005	451080	6559140	312	40	-90	0
RHAC006	451120	6559140	312	40	-90	0
RHAC007	450860	6559260	308	43	-90	0
RHAC008	450920	6559260	310	40	-90	0
RHAC009	451000	6559260	312	40	-90	0
RHAC010	451040	6559260	313	4	-90	0
RHAC010A	451040	6559260	313	40	-90	0
RHAC011	451080	6559260	314	6	-90	0
RHAC011A	451080	6559260	314	40	-90	0
RHAC012	451120	6559260	315	7	-90	0
RHAC013	451160	6559260	315	12	-90	0
RHAC014	450940	6559400	311	22	-90	0
RHAC015	450980	6559400	312	2	-90	0
RHAC015A	450980	6559400	312	25	-90	0
RHAC016	451020	6559400	312	3	-90	0
RHAC016A	451020	6559400	312	35	-90	0
RHAC017	451060	6559400	313	5	-90	0
RHAC017A	451060	6559400	313	46	-90	0
RHAC018	451100	6559400	314	1	-90	0
RHAC018A	451100	6559400	314	40	-90	0
RHAC019	451140	6559400	315	29	-90	0
RHAC020	450840	6559200	307	41	-90	0
RHAC021	450880	6559200	308	85	-90	0
RHAC022	450960	6559200	310	40	-90	0
RHAC023	450960	6559140	309	40	-90	0
RHAC024	450950	6558980	306	37	-90	0
RHAC025	450990	6558980	306	31	-90	0
RHAC026	451030	6558980	307	31	-90	0
RHAC027	451070	6558980	308	31	-90	0
RHAC028	450970	6558800	303	31	-90	0
RHAC029	451010	6558800	303	37	-90	0
RHAC030	451050	6558800	304	25	-90	0
RHAC031	451060	6558660	302	67	-60	90
RHAC032	451095	6558660	302	29	-90	0
RHAC033	451240	6558540	302	49	-90	0
RHAC034	451280	6558540	302	22	-90	0
RHAC035	451260	6557340	300	30	-90	0
RHAC036	451160	6559140	313	19	-90	0
RHAC037	451040	6559200	312	40	-90	0
RHAC038	450650	6561200	321	31	-90	0

RHAC039	450750	6561200	323	37	-90	0
RHAC040	450900	6561200	324	40	-90	0
RHAC041	451050	6561200	325	29	-90	0
RHAC042	450750	6560000	314	30	-90	0
RHAC043	450840	6560000	314	30	-90	0
RHAC044	450880	6560000	315	30	-90	0
RHAC045	450960	6560000	318	30	-90	0
RHAC046	451180	6557340	299	40	-90	0
RHAC047	451320	6557340	300	30	-90	0
RHAC048	451360	6557340	300	25	-90	0
RHAC049	451480	6555800	296	30	-90	0
RHAC050	451520	6555800	296	40	-90	0
RHAC051	451560	6555800	296	30	-90	0
RHAC052	451600	6555800	296	25	-90	0
RHAC053	446260	6558500	293	30	-60	90
RHAC054	446180	6558500	294	30	-60	90
RHAC055	446100	6558500	295	30	-60	90
RHAC056	446020	6558500	296	30	-60	90
RHAC057	445940	6558500	296	30	-60	90
RHAC058	445860	6558500	296	30	-60	90
RHAC059	445780	6558500	296	50	-60	90
RHAC060	446675	6554960	287	50	-60	0
RHAC061	446675	6554880	287	50	-60	0
RHAC062	446675	6554800	288	50	-60	0
RHAC063	446675	6554720	288	50	-60	0
RHAC064	446675	6554640	288	50	-60	0
RHAC065	446675	6554560	289	55	-60	0
RHAC066	446675	6554480	290	61	-60	0
RHAC067	446675	6554400	290	50	-60	0
RHAC068	446675	6554320	290	60	-60	0
RHAC069	446675	6554500	290	55	-60	0
RHAC070	459184.921	6541994.518	288	128.5	-60	90
RHAC071	459006.787	6541903.976	290	104	-60	90

Table 3. Air Core Drilling Summary.

Hole	Prospect	From	То	Samp_Type	Samp_Desc	Au_ppm	Co %	Ni %	Mn %
RHAC001	Roe 1	42	44	Chip	Composite	0.01	0.01	0.10	0.03
RHAC001	Roe 1	44	45	Chip	Single	0.01	0.02	0.16	0.16
RHAC002	Roe 1	0	2	Chip	Composite	0.01	0.01	0.07	0.06
RHAC002	Roe 1	2	3	Chip	Single	0.01	0.02	0.12	0.10
RHAC002	Roe 1	3	4	Chip	Single	0.01	0.15	0.45	0.39
RHAC002	Roe 1	4	5	Chip	Single	0.01	0.14	0.47	0.33
RHAC002	Roe 1	5	6	Chip	Single	0.01	0.09	0.44	0.26
RHAC002	Roe 1	6	7	Chip	Single	0.01	0.04	0.24	0.19
RHAC002A	Roe 1	0	2	Chip	Composite	0.01	0.01	0.10	0.07
RHAC002A	Roe 1	2	6	Chip	Composite	0.01	0.18	0.46	0.49
RHAC002A	Roe 1	6	10	Chip	Composite	0.01	0.05	0.40	0.30
RHAC002A	Roe 1	10	14	Chip	Composite	0.01	0.03	0.36	0.25
RHAC002A	Roe 1	14	18	Chip	Composite	0.01	0.02	0.36	0.17
RHAC002A	Roe 1	18	22	Chip	Composite	0.01	0.02	0.33	0.21
RHAC002A	Roe 1	22	26	Chip	Composite	0.01	0.04	0.36	0.30
RHAC002A	Roe 1	26	30	Chip	Composite	0.01	0.04	0.30	0.30
RHAC002A	Roe 1	0	2	Chip	Composite	0.01	0.03	0.32	0.17
RHAC003	Roe 1	2	2	Chip	Single	0.01	0.02	0.67	4.95
RHAC003	Roe 1	3	4	Chip	Single	0.01	0.06	0.52	0.44
RHAC003	Roe 1	4	5	Chip	Single	0.01	0.00	0.32	0.44
RHAC003	Roe 1	5	6			0.01	0.00	0.19	0.40
RHAC003	Roe 1	6	7	Chip Chip	Single Single	0.01	0.02	0.13	0.09
RHAC003	Roe 1	0	2		Composite	0.01	0.02	0.22	0.03
RHAC008	Roe 1	2	4	Chip	Composite	0.01	0.01	0.12	0.07
		4	6	Chip			0.02	0.31	0.14
RHAC008	Roe 1 Roe 1	6	7	Chip	Composite	0.01	0.04	0.43	0.21
RHAC008 RHAC008	Roe 1	7	8	Chip	Single	0.01	0.03	0.38	0.23
		8	° 9	Chip	Single		0.03	0.43	0.29
RHAC008	Roe 1	8 9	9 10	Chip	Single	0.01			
RHAC008	Roe 1			Chip	Single	0.01	0.03	0.43	0.23
RHAC008	Roe 1	10	11 12	Chip	Single	0.01	0.02	0.42	0.16
RHAC008	Roe 1	11		Chip	Single	0.01	0.03	0.44	0.14
RHAC008	Roe 1	12	13	Chip	Single	0.01	0.03	0.41	0.15
RHAC008	Roe 1	13	14	Chip	Single	0.01	0.05	0.39	0.18
RHAC008	Roe 1	14	15	Chip	Single	0.01	0.06	0.36	0.16
RHAC008	Roe 1	15	16	Chip	Single	0.01	0.05	0.32	0.15
RHAC008	Roe 1	16	18	Chip	Composite	0.01	0.05	0.37	0.18
RHAC008	Roe 1	18	20	Chip	Composite	0.01	0.08	0.45	0.28
RHAC008	Roe 1	20	22	Chip	Composite	0.01	0.04	0.33	0.17
RHAC008	Roe 1	22	24	Chip	Composite	0.01	0.05	0.37	0.32
RHAC008	Roe 1	24	26	Chip	Composite	0.01	0.07	0.43	0.41
RHAC008	Roe 1	26	28	Chip	Composite	0.01	0.05	0.37	0.28
RHAC008	Roe 1	28	30	Chip	Composite	0.01	0.03	0.31	0.19
RHAC009	Roe 1	4	6	Chip	Composite	0.01	0.03	0.35	0.28
RHAC009	Roe 1	6	8	Chip	Composite	0.01	0.02	0.31	0.24
RHAC009	Roe 1	8	10	Chip	Composite	0.01	0.02	0.26	0.16
RHAC009	Roe 1	10	12	Chip	Composite	0.01	0.02	0.26	0.15
RHAC009	Roe 1	12	14	Chip	Composite	0.01	0.03	0.35	0.19
RHAC009	Roe 1	14	16	Chip	Composite	0.01	0.03	0.37	0.16
RHAC009	Roe 1	16	18	Chip	Composite	0.01	0.02	0.30	0.16
RHAC009	Roe 1	18	20	Chip	Composite	0.01	0.02	0.28	0.16
RHAC009	Roe 1	20	22	Chip	Composite	0.01	0.02	0.28	0.14

RHAC021	Roe 1	2	4	Chip	Composite	0.01	0.03	0.15	0.05
RHAC021	Roe 1	4	6	Chip	Composite	0.01	0.02	0.18	0.03
RHAC021	Roe 1	22	23	Chip	Single	0.01	0.04	0.34	2.50
RHAC021	Roe 1	23	24	Chip	Single	0.01	0.06	0.34	2.97
RHAC021	Roe 1	24	25	Chip	Single	0.01	0.04	0.27	1.70
RHAC021	Roe 1	25	26	Chip	Single	0.01	0.25	0.29	13.7
RHAC021	Roe 1	26	27	Chip	Single	0.01	0.03	0.25	1.32
RHAC021	Roe 1	27	28	Chip	Single	0.01	0.02	0.16	0.84
RHAC021	Roe 1	28	29	Chip	Single	0.01	0.02	0.12	0.26
RHAC021	Roe 1	29	30	Chip	Single	0.01	0.03	0.08	0.49
RHAC021	Roe 1	30	31	Chip	Single	0.01	0.04	0.10	0.92
RHAC021	Roe 1	31	32	Chip	Single	0.01	0.04	0.10	0.92
RHAC021	Roe 1	32	33	Chip	Single	0.01	0.02	0.10	0.32
			34				-		
RHAC021	Roe 1	33		Chip	Single	0.01	0.07	0.14	0.36
RHAC021	Roe 1	38	39	Chip	Single	0.01	0.03	0.49	0.09
RHAC021	Roe 1	39	40	Chip	Single	0.01	0.04	0.60	0.10
RHAC021	Roe 1	40	41	Chip	Single	0.01	0.03	0.48	0.10
RHAC021	Roe 1	41	42	Chip	Single	0.01	0.06	0.54	0.39
RHAC021	Roe 1	42	43	Chip	Single	0.01	0.11	0.38	1.11
RHAC021	Roe 1	43	44	Chip	Single	0.01	0.03	0.24	0.38
RHAC021	Roe 1	44	45	Chip	Single	0.01	0.05	0.23	1.18
RHAC021	Roe 1	45	46	Chip	Single	0.01	0.03	0.14	0.35
RHAC022	Roe 1	0	2	Chip	Composite	0.01	0.02	0.20	0.29
RHAC022	Roe 1	2	4	Chip	Composite	0.01	0.02	0.25	0.31
RHAC022	Roe 1	4	6	Chip	Composite	0.01	0.02	0.25	0.19
RHAC022	Roe 1	6	8	Chip	Composite	0.01	0.02	0.26	0.11
RHAC022	Roe 1	8	10	Chip	Composite	0.01	0.01	0.32	0.12
RHAC022	Roe 1	10	11	Chip	Single	0.01	0.02	0.30	0.15
RHAC022	Roe 1	11	13	Chip	Composite	0.01	0.02	0.26	0.16
RHAC022	Roe 1	13	15	Chip	Composite	0.01	0.02	0.32	0.23
RHAC022	Roe 1	15	17	Chip	Composite	0.01	0.02	0.33	0.19
RHAC022	Roe 1	17	19	Chip	Composite	0.01	0.03	0.36	0.19
RHAC022	Roe 1	19	21	Chip	Composite	0.01	0.04	0.34	0.35
RHAC022	Roe 1	21	23	Chip	Composite	0.01	0.04	0.38	0.23
RHAC022	Roe 1	23	25	Chip	Composite	0.01	0.02	0.31	0.22
RHAC022	Roe 1	25	27	Chip	Composite	0.01	0.02	0.29	0.11
RHAC022	Roe 1	31	33	Chip	Composite	0.01	0.02	0.29	0.16
RHAC022	Roe 1	33	35	Chip	Composite	0.01	0.02	0.29	0.24
RHAC022	Roe 1	35	37	Chip	Composite	0.01	0.02	0.26	0.27
RHAC023	Roe 1	2	4	Chip	Composite	0.01	0.02	0.17	0.22
RHAC023	Roe 1	4	6	Chip	Composite	0.01	0.06	0.48	0.50
RHAC023	Roe 1	6	8	Chip	Composite	0.01	0.14	0.72	0.58
RHAC023	Roe 1	8	9	Chip	Single	0.01	0.16	0.72	1.08
RHAC023	Roe 1	9	10	Chip	Single	0.01	0.10	0.56	0.63
RHAC023	Roe 1	10	12	Chip	Composite	0.01	0.13	0.75	0.70
RHAC023	Roe 1	10	12	Chip	Composite	0.01	0.13	0.75	0.70
RHAC023	Roe 1 Roe 1	12	14	Chip	Composite	0.01	0.08	0.60	0.32
		14	18			0.01	0.04	0.52	
RHAC023	Roe 1			Chip	Composite		-		0.31
RHAC023	Roe 1	20	22	Chip	Composite	0.01	0.02	0.49	0.44
RHAC023	Roe 1	22	24	Chip	Composite	0.01	0.04	0.47	0.35
RHAC023	Roe 1	24	26	Chip	Composite	0.01	0.03	0.41	0.53
RHAC023	Roe 1	26	28	Chip	Composite	0.01	0.08	0.57	1.30
RHAC023	Roe 1	28	30	Chip	Composite	0.01	0.02	0.31	0.19
RHAC024	Roe 1	0	2	Chip	Composite	0.01	0.03	0.21	0.37
RHAC024	Roe 1	2	4	Chip	Composite	0.01	0.01	0.26	0.08
RHAC024	Roe 1	4	6	Chip	Composite	0.01	0.02	0.43	0.13
RHAC024	Roe 1	6	8	Chip	Composite	0.01	0.24	0.76	0.63
RHAC024	Roe 1	8	10	Chip	Composite	0.01	0.06	0.56	0.20
RHAC024	Roe 1	10	12	Chip	Composite	0.01	0.05	0.70	0.18
RHAC024	Roe 1	12	14	Chip	Composite	0.01	0.04	0.62	0.16
RHAC024	Roe 1	14	16	Chip	Composite	0.01	0.02	0.48	0.23
		r							0.35

RHAC028	Roe 1	3	5	Chip	Composite	0.01	0.01	0.09	0.09
RHAC028	Roe 1	5	6	Chip	Single	0.01	0.03	0.23	0.21
RHAC028	Roe 1	6	7	Chip	Single	0.01	0.04	0.27	0.19
RHAC028	Roe 1	10	11	Chip	Single	0.01	0.03	0.32	0.15
RHAC028	Roe 1	11	12	Chip	Single	0.01	1.36	1.29	3.37
RHAC028	Roe 1	12	13	Chip	Single	0.01	0.10	0.36	0.28
RHAC028	Roe 1	13	15	Chip	Composite	0.01	0.05	0.31	0.18
RHAC029	Roe 1	0	2	Chip	Composite	0.01	0.03	0.07	0.14
RHAC029	Roe 1	10	11	Chip	Single	0.01	0.02	0.41	0.20
RHAC029	Roe 1	11	12	Chip	Single	0.01	0.37	0.66	1.14
RHAC029	Roe 1	12	13	Chip	Single	0.01	0.46	0.82	1.44
RHAC029	Roe 1	13	14	Chip	Single	0.01	0.46	1.14	1.69
RHAC029	Roe 1	14	15	Chip	Single	0.01	0.29	0.91	1.18
RHAC029	Roe 1	15	16	Chip	Single	0.01	0.19	0.64	0.78
RHAC029	Roe 1	16	17	Chip	Single	0.01	0.10	0.55	0.41
RHAC029	Roe 1	17	18	Chip	Single	0.01	0.11	0.60	0.41
RHAC029	Roe 1	18	19	Chip	Single	0.01	0.09	0.57	0.37
RHAC029	Roe 1	19	20	Chip	Single	0.01	0.09	0.55	0.36
RHAC029	Roe 1	20	21	Chip	Single	0.01	0.07	0.53	0.32
RHAC029	Roe 1	21	22	Chip	Single	0.01	0.05	0.41	0.29
RHAC029	Roe 1	22	23	Chip	Single	0.01	0.05	0.44	0.38
RHAC029	Roe 1	23	24	Chip	Single	0.01	0.05	0.37	0.28
RHAC029	Roe 1	24	25	Chip	Single	0.01	0.03	0.30	0.26
RHAC029	Roe 1	25	26	Chip	Single	0.01	0.05	0.32	0.27
RHAC029	Roe 1	26	27	Chip	Single	0.01	0.03	0.26	0.18
RHAC029	Roe 1	27	28	Chip	Single	0.01	0.05	0.38	0.23
RHAC030	Roe 1	0	2	Chip	Composite	0.01	0.03	0.07	0.13
RHAC031	Roe 1	22	23	Chip	Single	0.01	0.03	0.36	0.14
RHAC031	Roe 1	23	24	Chip	Single	0.01	0.09	0.43	1.23
RHAC031	Roe 1	24	25	Chip	Single	0.01	0.12	0.32	0.87
RHAC031	Roe 1	25	26	Chip	Single	0.01	0.05	0.34	0.26
RHAC031	Roe 1	26	27	Chip	Single	0.01	0.05	0.34	0.32
RHAC031	Roe 1	27	28	Chip	Single	0.01	0.05	0.33	0.33
RHAC031	Roe 1	28	29	Chip	Single	0.01	0.06	0.35	0.47
RHAC031	Roe 1	29	30	Chip	Single	0.01	0.03	0.28	0.23
RHAC031	Roe 1	30	34	Chip	Composite	0.01	0.03	0.28	0.20
RHAC033	Roe 1	10	12	Chip	Composite	0.01	0.02	0.41	0.08
RHAC033	Roe 1	12	14	Chip	Composite	0.01	0.03	0.53	0.10
RHAC033	Roe 1	14	16	Chip	Composite	0.01	0.02	0.34	0.07
RHAC033	Roe 1	16	18	Chip	Composite	0.01	0.04	0.52	0.13
RHAC033	Roe 1	18	20	Chip	Composite	0.01	0.03	0.44	0.11
RHAC033	Roe 1	20	22	Chip	Composite	0.01	0.03	0.43	0.20
RHAC033	Roe 1	22	24	Chip	Composite	0.01	0.02	0.32	0.17

Table 4. Significant Assays

Appendix 1 – Kairos Minerals – Roe Hills Project JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 All sampling relevant to the work completed by Kairos and referred to in this release is based on either Aircore or RC drilling. PXRF Analysis of AC or RC chips for lithogeochemical purposes was carried out routinely using a handheld Olympus Innovex Delta Premium (DP4000C model) Portable XRF analyser. Samples were split on a 1 metre sample interval at the rig cyclone. Sample selection is based on geological logging and sampled to geological contacts. Individual assay samples typically vary in length from 1m individual to 4m composites. All samples were delivered by Kairos personnel to Intertek Genalysis Kalgoorlie WA for sample preparation prior to being transported by Intertek Genalysis to their Perth laboratories for final analysis. All samples were submitted for Four Acid Multi-Element Analysis (4A/OE33) and Fire Assay for Gold (FA/ICP-OES)
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether	 Aircore drilling was carried out by Strike Drilling Pty Ltd using an X350 track mounted drill rig with track mounted Morooka support vehicle and booster compressor. 3.5" dia

Criteria	JORC Code explanation	Commentary
	core is oriented and if so, by what method, etc).	 drill rods, 106mm dia blade bit, 104mm dia face sampling aircore hammer. RC drilling was carried out by Easternwell Drilling sub- contracted to Strike Drilling using an Explorac 220 RC truck mounted rig on an 8x4 Mercedes with booster compressor.4.5" dia drill rods, 5.5" dia face sampling hammer bits. AC holes were not surveyed downhole as the majority were vertical and less than 50m in depth. All RC holes were surveyed by the Drilling Supervisor/Senior Driller at regular intervals downhole as the drilling progressed using a north seeking gyroscopic survey instrument.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 AC/RC samples were logged in detail at the drill site by supervising geologists and recorded in the Company's database. Overall recoveries were excellent and there were no significant sample recovery problems. Sample depths are continually checked against the rod string depth during the drilling process by the Senior Driller.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the 	 Detailed geological logging of the entirety of each hole by Kairos geologists is carried out on the AC/RC chips and recorded as qualitative description of colour, lithological type, grain size, structures, minerals, alteration and various other features.

Criteria	JORC Code explanation	Commentary
	relevant intersections logged.	 Representative material is sieved and collected as 1m individual samples in number coded plastic chip trays and stored at the Company's site storage facility or in Perth. Photography of chips is not routinely done. Detailed petrological studies are planned for selected samples to assist ongoing evaluation.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All AC samples were dry. The majority of RC samples were dry. Minor water ingress occurred during rod/bit changes however samples were generally dry once active drilling recommenced. Samples were collected as 1m intervals via on-board cone splitters then laid out on the ground in the case of AC or for RC work collected in large numbered plastic bags . Sample quality was ensured by monitoring sample volume and by regularly cleaning the rig cyclone & sample splitters. Sampling sheets were prepared and checked by Kairos' site geologists and field technicians to ensure correct sample representation. QAQC samples were included at the rates of 1:25 as duplicates and 1:50 as industry standard (OREAS 192) All samples were delivered by Kairos' field personnel to Intertek Genalysis laboratories in Kalgoorlie for initial sample preparation

Criteria	JORC Code explanation	Commentary
		prior to transporting to IG Perth for analysis.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples were submitted to Intertek Genalysis Laboratories Kalgoorlie for sample preparation and couriered to Perth for Four Acid Multi-Element Analysis ICP-OES finish (4A/OE33). Gold analyses were carried out via the FA 25/OE or MS technique being Fire Assay with 25g lead collection fire assay in new pots, analysed by Inductively Coupled Plasma Mass Spectrometry. Standards, checks, blanks were introduced regularly throughout each sample batch. IG Laboratories conduct rigorous internal QAQC programs within each sample batch which are reported with sample values in final reports. Field reading of multi- elements are estimated using Olympus Innovex Delta Premium (DP4000C model) handheld XRF analyser prior to laboratory analysis. Reading times employed was 15 sec/beam for a total of 30 sec using 2 beam Geochem Mode. Handheld XRF QAQC includes supplied standards and blanks
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	 Primary data was collected using Excel templates utilizing lookup codes on laptop computers by Senior Supervising Geologists. No twin holes were drilled. All data is received and stored securely in digital

Criteria	JORC Code explanation	Commentary
	 Discuss any adjustment to assay data. 	 format in the Company's database. Final data is rigorously interpreted by Kairos' geoscientific personnel. Significant intersections are calculated by Kairos supervising geoscientists & verified by senior management.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill collars surveyed by handheld GPS with an accuracy of +/- 5m. All Roe Hills hole collars are in MGA94 Zone 51 (GDA94). All Kairos RC holes were surveyed down hole with north seeking gyroscopic survey instruments by the Supervising/Senior driller.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 At Roe1 hole spacing of Kairos' drilling is approximately 40-80m along section lines spaced approximately 200m apart. Minimal sample spacing for assay samples is 1m and maximum composite sample spacing is 4m. Sample intervals are determined by Kairos geologists during the course of the logging process. Sample width is dependent on lithological, structural or grade distribution boundaries. 2-4m composites may be submitted as considered appropriate for initial phases of AC and RC drilling. Exploratory drilling is of a wide spaced, preliminary

Criteria	JORC Code explanation	Commentary
		 nature. Mineral Resource and Ore Reserve Estimations are not currently being undertaken.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 At ROE1 the targeted cobalt bearing horizon is subhorizontal. The majority of AC holes were drilled vertically to provide true width intersections of the targeted horizon. The targeted gold bearing structures are interpreted to be moderately to steeply dipping at various orientations. RC drill holes testing gold targets were oriented to both the west and east in order to effectively test variable dips. Holes are designed to intersect the geological contacts/targets as close to perpendicular as possible in order to provide approximate true width intercepts at all times.
Sample security	The measures taken to ensure sample security.	 All samples were collected in the field at the project site in number coded calico bags/secure labelled polyweave sacks by Kairos' geological and field personnel. All samples were delivered directly to Intertek Genalysis Kalgoorlie for initial sample preparation prior to being transported to IG laboratories in Perth for final analysis.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	• N/A

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Kairos Limited owns 100% of the tenements that define the Roe Hills Project. The project consists of 8 EL's & (3 EL's under application) E28/2117, E28/2118, E28/2585, E28/1935, E28/2594, E28/2593, E28/2548, E28/2495, P28/1292, P28/1293, P28/1294, P28/1295, P28/1296, P28/1297, P28/1298, P28/1299, P28/1300, E28/2698, E28/2699, E28/2700 The Project is Located on Cowarna Downs & Madonnia Downs Pastoral leases. Kairos is not aware of any existing impediments nor of any potential impediments which may impact ongoing exploration and development activities at the Project site.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Significant past work has been carried out by other parties for both Ni and Au exploration including, surface geochemical sampling, airborne and ground electromagnetic geophysical surveys, RAB, AC, RC and DD drilling. This is acknowledged in past ASX announcements and Company reports. No assessment of the potential of the Project tenure to host significant Cobalt mineralisation has been previously undertaken.
Geology	 Deposit type, geological setting and style of mineralisation. 	 Targets are Archaean aged Cobalt – Nickel – Manganese Oxide Mineralisation and structurally controlled BIF sulphide replacement and shear zone hosted gold mineralisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. Listed in the preceding section 	 The co ordinates and other attributes of all drillholes relevant to the work being described are included in summary tables within the body and appendices of the release.

Criteria	JORC Code explanation	Commentary
Data aggrega tion methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Exploration results as reported are length-weight averages where applicable. Significant Cobalt intercepts are defined using a 0.05% cut-off grade in keeping with industry accepted practice.
Relation ship between minerali sation widths and intercep t lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 All intercepts reported are measured in down hole metres. All holes are oriented to provide intersections are orthogonal to the respective targeted horizon. Holes designed to test the Cobalt mineralisation at ROE1 were drilled vertically as the mineralized horizon is sub-horizontal. Holes designed to test potential gold bearing targets are generally angled and oriented towards either east or west depending on the interpreted dip of the target being tested.
Diagram s	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Suitable summary plans, geological cross-sections and 3D Leapfrog computer images where available have been included in the body of the report.
Balance d reportin g	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All relevant results have been reported
Other substant ive	 Other exploration data, if meaningful and material, should be reported including 	 Geophysical surveys are designed and managed by Newexco Services Pty Ltd.

Criteria	JORC Code explanation	Commentary
explorati on data	(but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Interpretation of the aeromagnetics, gravity and electromagnetic data is being undertaken by Newexco Services Pty Ltd. Drill Sampling Gold and multi-element analysis is being conducted routinely on all samples for a base metal suite and potentially deleterious elements including Al, As, Co, Cr, Cu, Fe, Mg, Ni, S, Ti, Zn plus Au, Pt, Pd & Pd.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further AC, RC and Diamond drilling is planned to continue assessment of the high priority gold trends at Lady of the Lake, Ginger Kiss, Terra and Caliburn and additional high priority targets identified through the Companys ongoing assessment of the broader project area, eg Lingering Kiss. Further geophysical surveys to assist ongoing exploration efforts in areas where the prospective basement rocks are buried under cover ,including IP, is proposed in conjunction with the already successful geochemical and geological modelling. Further surface geochemical surveys are planned in areas where residual soils have been identified. Interrogation of historical datasets is ongoing. Refer to diagrams in the body of the release.